镉胁迫对线麻(Cannabis Sativa L.)富集及光合特性的影响

何芸雨, 蒋蓉, 罗颖, 张梦迪, 吕严凤, 薛俊武, 杨占彪. 镉胁迫对线麻(Cannabis Sativa L.)富集及光合特性的影响[J]. 环境化学, 2017, 36(11): 2341-2348. doi: 10.7524/j.issn.0254-6108.2017052203
引用本文: 何芸雨, 蒋蓉, 罗颖, 张梦迪, 吕严凤, 薛俊武, 杨占彪. 镉胁迫对线麻(Cannabis Sativa L.)富集及光合特性的影响[J]. 环境化学, 2017, 36(11): 2341-2348. doi: 10.7524/j.issn.0254-6108.2017052203
HE Yunyu, JIANG Rong, LUO Ying, ZHANG Mengdi, LYV Yanfeng, XUE Junwu, YANG Zhanbiao. Influence of cadmium stress on the accumulation and photosynthetic characteristics of Cannabis Sativa L.[J]. Environmental Chemistry, 2017, 36(11): 2341-2348. doi: 10.7524/j.issn.0254-6108.2017052203
Citation: HE Yunyu, JIANG Rong, LUO Ying, ZHANG Mengdi, LYV Yanfeng, XUE Junwu, YANG Zhanbiao. Influence of cadmium stress on the accumulation and photosynthetic characteristics of Cannabis Sativa L.[J]. Environmental Chemistry, 2017, 36(11): 2341-2348. doi: 10.7524/j.issn.0254-6108.2017052203

镉胁迫对线麻(Cannabis Sativa L.)富集及光合特性的影响

  • 基金项目:

    国家自然科学基金(21507095)和四川农业大学科研兴趣培养计划项目(20150151)资助.

Influence of cadmium stress on the accumulation and photosynthetic characteristics of Cannabis Sativa L.

  • Fund Project: Supported by the National Natural Science Foundation Project (21507095) and the Research Interest Training Program of Sichuan Agricultural University(20150151).
  • 摘要: 选择广泛栽培于西北地区的线麻(Cannabis Sativa L.)进行盆栽实验,研究了Cd胁迫对线麻富集和光合特性的影响.结果显示,线麻根、茎、叶中Cd最大富集量分别达到503.40、350.63、77.90 mg·kg-1.随着土壤Cd浓度的增加,线麻根、茎、叶的富集量逐渐增加,且表现为:根部 > 茎部 > 叶部.当Cd≥150 mg·kg-1时,Cd从根部向地上部分的转运开始加强,且地上部分组织中主要集中在茎部.线麻株高、比叶重和生物量随Cd浓度的增加先升高后下降.当Cd浓度≥150 mg·kg-1时,株高、比叶重和地下部分生物量明显低于对照(PP>0.05).当Cd浓度为50 mg·kg-1时线麻叶绿素含量、类胡萝卜素含量、净光合速率、蒸腾速率、气孔导度、最大净光合速率和光饱和点达到最大值,光补偿点随Cd浓度的增加而持续增加.结果表明,线麻具有较高的Cd富集能力,可以作为潜在的Cd污染土壤修复栽培作物,但野外修复中如何提高线麻的生物量有待于进一步研究.
  • 加载中
  • [1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 北京:环境保护部, 国土资源部. 2014. Ministry of Environmental Protection of China, Ministry of Land and Resources of China. Report on the national general survey of soil contamination[R]. Beijing:Ministry of Environmental Protection of China, Ministry of Land and Resources of China. 2014.
    [2] 鲍桐, 廉梅花, 孙丽娜, 等. 重金属污染土壤植物修复研究进展[J]. 生态环境学报, 2008, 17(2):858-865.

    BAO T, LIAN M H, SUN L N, et al. Research progress on the phytoremediation of soils contaminated by heavy metals[J]. Ecology and Environment, 2008, 17(2):858-865(in Chinese).

    [3] ALI H, KHAN E, SAJAD M A. Phytoremediation of heavy metals——concepts and applications[J]. Chemosphere, 2013, 91(7):869-881.
    [4] 王庆仁, 崔岩山, 董艺婷. 植物修复——重金属污染土壤整治有效途径[J]. 生态学报, 2001, 21(2):326-331.

    WANG Q R, CUI Y S, DONG Y T. Phytoremediation——An effective approach of heavy metal cleanup from contaminated soil[J]. Acta Ecologica Sinica, 2001, 21(2):326-331(in Chinese).

    [5] 杨勇, 王巍, 江荣风, 等. 超累积植物与高生物量植物提取镉效率的比较[J]. 生态学报, 2009, 29(5):2732-2737.

    YANG Y, WANG W, JIANG R F, et al. Comparison of phytoextraction efficiency of Cd with the hyperaccumulator Thlaspi caerulescens and three high biomass species[J]. Acta Ecologica Sinica, 2009, 29(5):2732-2737(in Chinese).

    [6] 梁淑敏, 许艳萍, 陈裕, 等. 工业大麻对重金属污染土壤的治理研究进展[J]. 生态学报, 2013, 33(5):1347-1356.

    LIANG S M, XU Y P, CHEN Y, et al. Advances and the effects of industrial hemp for the cleanup of heavy metal pollution[J]. Acta Ecologica Sinica, 2013, 33(5):1347-1356(in Chinese).

    [7] 唐寅. 锌镉胁迫对汉麻生长及其光合特性和韧皮纤维性能的影响研究[D]. 杭州:浙江大学, 2016. TANG Y. The response of characteristics about growth, photosynthesis and fiber properties to Zn/Cd stress in hemp (Cannabis sativa L.)[D]. Hanzhou:Zhejiang University, 2016(in Chinese).
    [8] ZHANG X, ZHANG S, XU X, et al. Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L.[J]. Journal of Hazardous Materials, 2010, 180(1-3):303-308.
    [9] 张志良. 植物生理学实验指导(第二版)[M]. 北京:高等教育出版社, 1990. ZHANG Z L. The guidance of plant physiology experiment (second edition)[M]. Beijing:Higher Education Press, 1990(in Chinese).
    [10] ZHANG S R, LIN H C, DENG L, et al. Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L.[J]. Ecological Engineering, 2013, 51(2):133-139.
    [11] RICHARDSON A D, BERLYN G P. Spectral reflectance and photosynthetic properties of Betula papyrifera (betulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont, USA[J]. American Journal of Botany, 2002, 89(1):88-94.
    [12] 刘柿良, 马明东, 潘远智, 等. 不同光强对两种桤木幼苗光合特性和抗氧化系统的影响[J]. 植物生态学报, 2012, 36(10):1062-1074.

    LIU S L, MA M D, PAN Y Z, et al. Effects of light regimes on photosynthetic characteristics and antioxidant system in seedlings of two alder species[J]. Chinese Journal of Plant Ecology, 2012, 36(10):1062-1074(in Chinese).

    [13] 曾民, 郭鸿彦, 郭蓉, 等. 大麻对重金属污染土壤的植物修复能力研究[J]. 土壤通报, 2013,44(2):472-476.

    ZENG M, GUO H Y, GUO R, et al. A study on phytoremediation of Cannabis sativa L. in heavy metals polluted soil[J]. Chinese Journal of Soil Science, 2013, 44(2):472-476(in Chinese).

    [14] 孙竹. 黄麻(Corchorus capsularis L.)对Cd的富集特征及生理响应研究[D]. 成都:四川农业大学, 2015. SUN Z. Accumulation characteristics and physiological response of cadmium in Corchorus capsularis L.[D]. Chengdu:Sichuan Agriculture University, 2015(in Chinese).
    [15] 夏汉平. 土壤-植物系统中的镉研究进展[J]. 应用与环境生物学报, 1997, 3(3):289-298.

    XIA H P. Studies on cadmium in soil-plant system[J]. Chinese Journal of Applied and Environmental Biology, 1997, 3(3):289-298(in Chinese).

    [16] 张玉秀, 张倩, 李霞, 等. 不同pH与重金属Cd胁迫对紫穗槐萌发和幼苗生长的影响[J]. 环境化学, 2012, 31(10):1569-1574.

    ZHANG Y X, ZHANG Q, LI X, et al. Effects of pH and cadmium on the seed germination and seedling growth of Amorpha fruticosa L.[J]. Environmental Chemistry, 2012, 31(10):1569-1574(in Chinese).

    [17] 吴丹, 王友保, 李伟, 等. 镉胁迫对吊兰生长与土壤酶活性的影响[J]. 环境化学, 2012, 31(10):1562-1568.

    WU D, WANG Y B, LI W, et al. Effects of cadmium exposure on Chlorophytum comosum growth and soil enzyme activities[J]. Environmental Chemistry, 2012, 31(10):1562-1568(in Chinese).

    [18] JIA N L, QI X Z, SONG W, et al. Cadmium tolerance and accumulation of Althaea rosea Cav. and its potential as a hyperaccumulator under chemical enhancement[J]. Environmental Monitoring & Assessment, 2009, 149(1/4):419-427.
    [19] 李明亮, 李欢, 王凯荣, 等. Cd胁迫下丛枝菌根对花生生长、光合生理及Cd吸收的影响[J]. 环境化学, 2016, 35(11):2344-2352.

    LI M L, LI H, WANG K R, et al. Effect of arbuscular mycorrhizae on the growth, photosynthetic characteristics and cadmium uptake of peanut plant under cadmium stress[J]. Environmental Chemistry, 2016, 35(11):2344-2352(in Chinese).

    [20] 王玉萍, 常宏, 李成, 等. Ca2+对镉胁迫下玉米幼苗生长、光合特征和PSⅡ功能的影响[J]. 草业学报, 2016, 25(5):40-48.

    WANG Y P, CHANG H, LI C, et al. Effects of exogenous Ca2+ on growth,photosynthetic characteristics and photosystem Ⅱ function of maize seedlings under cadmium stress[J]. Acta Prataculturae Sinica, 2016, 25(5):40-48(in Chinese).

    [21] 慈敦伟, 姜东, 戴廷波, 等. 镉毒害对小麦幼苗光合及叶绿素荧光特性的影响[J]. 麦类作物学报, 2005, 25(5):88-91.

    CI D W, JIANG D, DAI T B, et al. Effect of Cd Toxicity on photosynthesis and chlorophy Ⅱ fluorescence of wheat seedling[J]. Journal of Triticeae Crops, 2005, 25(5):88-91(in Chinese).

  • 加载中
计量
  • 文章访问数:  1109
  • HTML全文浏览数:  1048
  • PDF下载数:  136
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-05-22
  • 刊出日期:  2017-11-15

镉胁迫对线麻(Cannabis Sativa L.)富集及光合特性的影响

  • 1.  四川农业大学环境学院, 成都, 611130;
  • 2.  甘肃省会宁县农技中心, 会宁, 730700
基金项目:

国家自然科学基金(21507095)和四川农业大学科研兴趣培养计划项目(20150151)资助.

摘要: 选择广泛栽培于西北地区的线麻(Cannabis Sativa L.)进行盆栽实验,研究了Cd胁迫对线麻富集和光合特性的影响.结果显示,线麻根、茎、叶中Cd最大富集量分别达到503.40、350.63、77.90 mg·kg-1.随着土壤Cd浓度的增加,线麻根、茎、叶的富集量逐渐增加,且表现为:根部 > 茎部 > 叶部.当Cd≥150 mg·kg-1时,Cd从根部向地上部分的转运开始加强,且地上部分组织中主要集中在茎部.线麻株高、比叶重和生物量随Cd浓度的增加先升高后下降.当Cd浓度≥150 mg·kg-1时,株高、比叶重和地下部分生物量明显低于对照(PP>0.05).当Cd浓度为50 mg·kg-1时线麻叶绿素含量、类胡萝卜素含量、净光合速率、蒸腾速率、气孔导度、最大净光合速率和光饱和点达到最大值,光补偿点随Cd浓度的增加而持续增加.结果表明,线麻具有较高的Cd富集能力,可以作为潜在的Cd污染土壤修复栽培作物,但野外修复中如何提高线麻的生物量有待于进一步研究.

English Abstract

参考文献 (21)

目录

/

返回文章
返回