镉胁迫对线麻(Cannabis Sativa L.)富集及光合特性的影响
Influence of cadmium stress on the accumulation and photosynthetic characteristics of Cannabis Sativa L.
-
摘要: 选择广泛栽培于西北地区的线麻(Cannabis Sativa L.)进行盆栽实验,研究了Cd胁迫对线麻富集和光合特性的影响.结果显示,线麻根、茎、叶中Cd最大富集量分别达到503.40、350.63、77.90 mg·kg-1.随着土壤Cd浓度的增加,线麻根、茎、叶的富集量逐渐增加,且表现为:根部 > 茎部 > 叶部.当Cd≥150 mg·kg-1时,Cd从根部向地上部分的转运开始加强,且地上部分组织中主要集中在茎部.线麻株高、比叶重和生物量随Cd浓度的增加先升高后下降.当Cd浓度≥150 mg·kg-1时,株高、比叶重和地下部分生物量明显低于对照(PP>0.05).当Cd浓度为50 mg·kg-1时线麻叶绿素含量、类胡萝卜素含量、净光合速率、蒸腾速率、气孔导度、最大净光合速率和光饱和点达到最大值,光补偿点随Cd浓度的增加而持续增加.结果表明,线麻具有较高的Cd富集能力,可以作为潜在的Cd污染土壤修复栽培作物,但野外修复中如何提高线麻的生物量有待于进一步研究.Abstract: Cannabis sativa L., widely cultivated in the northwest of China was selected as the tested plant, and a pot experiment was conducted to investigate the effects of Cd stress on the accumulation and photosynthetic characteristics of C. sativa L. The results showed that the maximum accumulation of Cd in root, stem and leaf was 503.40, 350.63 and 77.90 mg·kg-1, respectively. With increasing Cd concentration in soil, the Cd content in root, stem and leaf of C. sativa L. increased gradually. The Cd accumulation in root was the most, followed by stem and leaf. Furthermore, the translocation of Cd from root to the aboveground parts enhanced when the concentration was greater than 150 mg·kg-1. The stem had higher bioconcentration factor than leaf in all treatments. The plant height, specific leaf weight and biomass first increased and then decreased with increasing Cd concentration in soil. When the soil Cd concentration was greater than 150 mg·kg-1, the plant height, specific leaf weight and biomass of underground parts were significantly lower than that in CK (PP>0.05). The content of chlorophyll and carotenoid, net photosynthetic rate, transpiration rate, stomata conductance, maximum net photosynthetic rate and light saturation point of C. sativa L. were highest at 50 mg·kg-1 Cd treated soil. Light compensation point, however, increased continually with increasing soil Cd concentration. The results suggest that C. sativa L. had the high capacity of Cd-enrichment. Thus, it can be used as an alternative plant for the remediation of Cd contaminated soil. However, the future study should be continued to improve the biomass of C. sativa L. under field application.
-
Key words:
- Cannabis sativa L. /
- accumulation /
- growth /
- photosynthetic rate /
- cadmium
-
[1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 北京:环境保护部, 国土资源部. 2014. Ministry of Environmental Protection of China, Ministry of Land and Resources of China. Report on the national general survey of soil contamination[R]. Beijing:Ministry of Environmental Protection of China, Ministry of Land and Resources of China. 2014. [2] 鲍桐, 廉梅花, 孙丽娜, 等. 重金属污染土壤植物修复研究进展[J]. 生态环境学报, 2008, 17(2):858-865. BAO T, LIAN M H, SUN L N, et al. Research progress on the phytoremediation of soils contaminated by heavy metals[J]. Ecology and Environment, 2008, 17(2):858-865(in Chinese).
[3] ALI H, KHAN E, SAJAD M A. Phytoremediation of heavy metals——concepts and applications[J]. Chemosphere, 2013, 91(7):869-881. [4] 王庆仁, 崔岩山, 董艺婷. 植物修复——重金属污染土壤整治有效途径[J]. 生态学报, 2001, 21(2):326-331. WANG Q R, CUI Y S, DONG Y T. Phytoremediation——An effective approach of heavy metal cleanup from contaminated soil[J]. Acta Ecologica Sinica, 2001, 21(2):326-331(in Chinese).
[5] 杨勇, 王巍, 江荣风, 等. 超累积植物与高生物量植物提取镉效率的比较[J]. 生态学报, 2009, 29(5):2732-2737. YANG Y, WANG W, JIANG R F, et al. Comparison of phytoextraction efficiency of Cd with the hyperaccumulator Thlaspi caerulescens and three high biomass species[J]. Acta Ecologica Sinica, 2009, 29(5):2732-2737(in Chinese).
[6] 梁淑敏, 许艳萍, 陈裕, 等. 工业大麻对重金属污染土壤的治理研究进展[J]. 生态学报, 2013, 33(5):1347-1356. LIANG S M, XU Y P, CHEN Y, et al. Advances and the effects of industrial hemp for the cleanup of heavy metal pollution[J]. Acta Ecologica Sinica, 2013, 33(5):1347-1356(in Chinese).
[7] 唐寅. 锌镉胁迫对汉麻生长及其光合特性和韧皮纤维性能的影响研究[D]. 杭州:浙江大学, 2016. TANG Y. The response of characteristics about growth, photosynthesis and fiber properties to Zn/Cd stress in hemp (Cannabis sativa L.)[D]. Hanzhou:Zhejiang University, 2016(in Chinese). [8] ZHANG X, ZHANG S, XU X, et al. Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L.[J]. Journal of Hazardous Materials, 2010, 180(1-3):303-308. [9] 张志良. 植物生理学实验指导(第二版)[M]. 北京:高等教育出版社, 1990. ZHANG Z L. The guidance of plant physiology experiment (second edition)[M]. Beijing:Higher Education Press, 1990(in Chinese). [10] ZHANG S R, LIN H C, DENG L, et al. Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L.[J]. Ecological Engineering, 2013, 51(2):133-139. [11] RICHARDSON A D, BERLYN G P. Spectral reflectance and photosynthetic properties of Betula papyrifera (betulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont, USA[J]. American Journal of Botany, 2002, 89(1):88-94. [12] 刘柿良, 马明东, 潘远智, 等. 不同光强对两种桤木幼苗光合特性和抗氧化系统的影响[J]. 植物生态学报, 2012, 36(10):1062-1074. LIU S L, MA M D, PAN Y Z, et al. Effects of light regimes on photosynthetic characteristics and antioxidant system in seedlings of two alder species[J]. Chinese Journal of Plant Ecology, 2012, 36(10):1062-1074(in Chinese).
[13] 曾民, 郭鸿彦, 郭蓉, 等. 大麻对重金属污染土壤的植物修复能力研究[J]. 土壤通报, 2013,44(2):472-476. ZENG M, GUO H Y, GUO R, et al. A study on phytoremediation of Cannabis sativa L. in heavy metals polluted soil[J]. Chinese Journal of Soil Science, 2013, 44(2):472-476(in Chinese).
[14] 孙竹. 黄麻(Corchorus capsularis L.)对Cd的富集特征及生理响应研究[D]. 成都:四川农业大学, 2015. SUN Z. Accumulation characteristics and physiological response of cadmium in Corchorus capsularis L.[D]. Chengdu:Sichuan Agriculture University, 2015(in Chinese). [15] 夏汉平. 土壤-植物系统中的镉研究进展[J]. 应用与环境生物学报, 1997, 3(3):289-298. XIA H P. Studies on cadmium in soil-plant system[J]. Chinese Journal of Applied and Environmental Biology, 1997, 3(3):289-298(in Chinese).
[16] 张玉秀, 张倩, 李霞, 等. 不同pH与重金属Cd胁迫对紫穗槐萌发和幼苗生长的影响[J]. 环境化学, 2012, 31(10):1569-1574. ZHANG Y X, ZHANG Q, LI X, et al. Effects of pH and cadmium on the seed germination and seedling growth of Amorpha fruticosa L.[J]. Environmental Chemistry, 2012, 31(10):1569-1574(in Chinese).
[17] 吴丹, 王友保, 李伟, 等. 镉胁迫对吊兰生长与土壤酶活性的影响[J]. 环境化学, 2012, 31(10):1562-1568. WU D, WANG Y B, LI W, et al. Effects of cadmium exposure on Chlorophytum comosum growth and soil enzyme activities[J]. Environmental Chemistry, 2012, 31(10):1562-1568(in Chinese).
[18] JIA N L, QI X Z, SONG W, et al. Cadmium tolerance and accumulation of Althaea rosea Cav. and its potential as a hyperaccumulator under chemical enhancement[J]. Environmental Monitoring & Assessment, 2009, 149(1/4):419-427. [19] 李明亮, 李欢, 王凯荣, 等. Cd胁迫下丛枝菌根对花生生长、光合生理及Cd吸收的影响[J]. 环境化学, 2016, 35(11):2344-2352. LI M L, LI H, WANG K R, et al. Effect of arbuscular mycorrhizae on the growth, photosynthetic characteristics and cadmium uptake of peanut plant under cadmium stress[J]. Environmental Chemistry, 2016, 35(11):2344-2352(in Chinese).
[20] 王玉萍, 常宏, 李成, 等. Ca2+对镉胁迫下玉米幼苗生长、光合特征和PSⅡ功能的影响[J]. 草业学报, 2016, 25(5):40-48. WANG Y P, CHANG H, LI C, et al. Effects of exogenous Ca2+ on growth,photosynthetic characteristics and photosystem Ⅱ function of maize seedlings under cadmium stress[J]. Acta Prataculturae Sinica, 2016, 25(5):40-48(in Chinese).
[21] 慈敦伟, 姜东, 戴廷波, 等. 镉毒害对小麦幼苗光合及叶绿素荧光特性的影响[J]. 麦类作物学报, 2005, 25(5):88-91. CI D W, JIANG D, DAI T B, et al. Effect of Cd Toxicity on photosynthesis and chlorophy Ⅱ fluorescence of wheat seedling[J]. Journal of Triticeae Crops, 2005, 25(5):88-91(in Chinese).
计量
- 文章访问数: 1109
- HTML全文浏览数: 1048
- PDF下载数: 136
- 施引文献: 0