无机-有机复配材料对Cd污染土壤的修复效应
Effect of inorganic-organic compound mixtures on the immobilization remediation of Cd contaminated soil
-
摘要: 通过大田试验,研究了无机材料(海泡石、蒙脱土和骨粉)-有机物料(菌渣、鸡粪、牛粪和蚯蚓粪)复配材料对Cd污染土壤的钝化修复效应及其对土壤酶活性的影响.结果表明,有机-无机材料复配处理显著提高了土壤pH值,最大增加0.96个pH单位.不同处理下土壤中TCLP(Toxicity characteristic leaching procedure)提取态Cd含量均有所降低,海泡石+有机物料、蒙脱土+有机物料和骨粉+有机物料处理下分别较对照减少了12.5%—24.9%、10.4%—19.4%和12.0%—21.7%.与对照相比,不同复配处理下,玉米籽粒Cd含量降低22.8%—79.0%(骨粉+蚯蚓处理除外),低于国家食品卫生标准(0.1 mg·kg-1).不同复配材料对土壤过氧化氢酶和脲酶活性促进效果整体上表现为骨粉+有机物料 > 蒙脱土+有机物料 > 海泡石+有机物料,较对照最大增幅分别达到74.4%、42.7%和10.5%.Abstract: Field experiments were conducted to investigate the effects of inorganic materials (such as sepiolite, montmorilloniod and bone meal) and organic materials (e.g. fungi residue, chicken manure, cow dung and earthworm feces) on the immobilization remediation of Cd contaminated soils and soil enzyme activities. The results showed that organic-inorganic compound materials increased soil pH significantly, with a maximum increase of 0.96 pH units. The concentration of toxicity characteristic leaching procedure (TCLP)-Cd was reduced under the treatments of sepiolite + organic materials, montmorilloniod + organic materials and bone meal + organic materials, resulting in 12.5%-24.9%, 10.4%-19.4% and 12.0%-21.7% reduction, respectively, when compared with the control groups. In comparison to the cented soils, the content of Cd in maize was reduced by 22.8%-79.0% (expect for the treatments of bone meal + earthworm feces), which was below the maximum permissible concentration of Cd set by the National Standard Agency of China (0.1 mg·kg-1). The decreasing order of catalase and urease activities was bone meal + organic materals > montmorilloniod + organic materials > sepiolite + organic materials, with a maximum increase of 74.4%, 42.7% and 10.5%, respectively, in comparison to CK.
-
Key words:
- Cd /
- immobilization remediation /
- inorganic materials /
- organic materials /
- soil enzyme
-
[1] HE Z, YANG X E, STOFFELLA P J. Trace elements in agroecosystems and impacts on the environment[J]. Journal of Trace Elements in Medicine and Biology, 2005,19(2/3):125-140. [2] BROWN S, CHANEY R, HALLFRISCH J, et al. In situ soil treatments to reduce the phyto-and bioavailability of lead, zinc, and cadmium[J]. Journal of Environmental Quality, 2004,33(2):522-531. [3] [4] 陈朗, 宋玉芳, 张薇, 等. 土壤镉污染毒性效应的多指标综合评价[J]. 环境科学, 2008, 29(9):2606-2612. CHEN L, SONG Y F, ZAHNG W,et al. Assessment of toxicity effects for cadmium contamination in soils by means of multi-indexes[J]. Environmental Science, 2008, 29(9):2606-2612(in Chinese).
[5] 周启星, 宋玉芳. 污染土壤修复原理与方法[M]. 北京:科学出版社, 2004. ZHOU Q X, SONG Y F. Principles and methods of contaminated soil remediation[M].Beijing:Science Press, 2004(in Chinese). [6] SUN Y B, ZHOU Q X, DIAO C Y. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L[J]. Bioresource Technology, 2008,99(5):1103-1110. [7] 梁媛, 王晓春, 曹心德. 基于磷酸盐、碳酸盐和硅酸盐材料化学钝化修复重金属污染土壤的研究进展[J]. 环境化学, 2012, 31(1):16-25. LIANG Y, WANG X C, CAO X D. Immobilization of heavy metals in contaminated soils with phosphate-,carbonate-,and silicate-based amendments:A review[J]. Environmental Chemistry, 2012, 31(1):16-25(in Chinese).
[8] 梁学峰, 徐应明, 王林, 等. 天然黏土联合磷肥对农田土壤镉铅污染原位钝化修复效应研究[J]. 环境科学学报, 2011,31(5):1011-1018. LIANG X F, XU Y M, WANG L, et al. In situ immobilization of cadmium and lead in a contaminated agricultural field by adding natural clays combined with phosphate fertilizer[J]. Acta Scientiae Circumstantiae, 2011, 31(5):1011-1018(in Chinese).
[9] 郭观林, 周启星, 李秀颖. 重金属污染土壤原位化学固定修复研究进展[J]. 应用生态学报, 2005, 16(10):1990-1996. GUO G L, ZHOU Q X, LI X Y. Advances in research on in situ chemo-immobilization of heavy metals in contaminated soils[J]. Chinese Journal of Applied Ecology, 2005,16(10):1990-1996(in Chinese).
[10] CAO X D, MA L Q, CHEN M, et al. Impacts of phosphate amendments on lead biogeochemistry at a contaminated site[J]. Environmental Science & Technology, 2002,36(24):5296-5304. [11] SUN Y B, SUN G H, XU Y M, et al. Assessment of sepiolite for immobilization of cadmium-contaminated soils[J]. Geoderma, 2013,193:149-155. [12] 曹心德, 魏晓欣, 代革联, 等. 土壤重金属复合污染及其化学钝化修复技术研究进展[J]. 环境工程学报, 2011,5(7):1441-1453. CAO X D, WEI X X,DAI G L, et al.Combined pollution of multiple heavy metals and their chemical immobilization in contaminated soils:A review[J]. Chinese Journal of Environmental Engineering, 2011, 5(7):1441-1453(in Chinese).
[13] SUN Y B, XU Y, XU Y M, et al. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials[J]. Environmental Pollution, 2016, 208(B):739-746. [14] LIANG X F, HAN J, XU Y M, et al. In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite[J]. Geoderma, 2014, 235-236(4):9-18. [15] BROWN S, CHANEY R L, HALLFRISCH J G, et al. Effect of biosolids processing on lead bioavailability in an urban soil[J]. Journal of Environmental Quality, 2003, 32(1):100-108. [16] 周利强, 尹斌, 吴龙华, 等. 有机物料对污染土壤上水稻重金属吸收的调控效应[J]. 土壤, 2013, 45(2):227-232. ZHOU L Q, YIN B, WU L H, et al. Effects of different organic amendments on uptake of heavy metals in rice from contaminated soil[J]. Soils, 2013, 45(2):227-232(in Chinese).
[17] 李剑睿, 徐应明, 林大松, 等. 农田重金属污染原位钝化修复研究进展[J]. 生态环境学报, 2014, 23(4):721-728. LI J R, XU Y M, LIN D S, et al. In situ immobilization remediation of heavy metals in contaminated soils:A review[J]. Ecology and Environmental Sciences, 2014, 23(4):721-728(in Chinese).
[18] 矫威. 不同改良剂对作物生长发育及酸性土壤理化性状的影响[D]. 武汉:华中农业大学, 2014. JIAO W. Effects of different amendments on crop growth and the physical and chemical properties of acidic soil[D]. Wuhan:Huazhong Agricultural University, 2014(in Chinese). [19] 李扬, 乔玉辉, 莫晓辉, 等. 蚯蚓粪作为土壤重金属污染修复剂的潜力分析[J]. 农业环境科学学报, 2010,29(增刊):250-255. LI Y, QIAO Y H, MO X H, et al. Analysis for earthworm feces as one of potential repair agents of heavy metal contamination in soil[J]. Journal of Agro-Environment Science, 2010 , 29(S1):250-255(in Chinese).
[20] MADEJON E, DE MORA A P, FELIPE E, et al. Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation[J]. Environmental Pollution, 2006, 139(1):40-52. [21] 孙约兵, 王朋超, 徐应明, 等. 海泡石对镉-铅复合污染钝化修复效应及其土壤环境质量影响研究[J]. 环境科学, 2014,35(12):4720-4726. SUN Y B, WANG P C, XU Y M, et al. Immobilization remediation of Cd and Pb contaminated soil:remediation potential and soil environmental quality[J]. Environmental Science, 2014, 35(12):4720-4726(in Chinese).
[22] YANG Z F, CHEN Y L, QIAN R, et al. A study of the effect of soil pH on chemical species of cadmium by simulated experiments[J]. Earth Science Frontiers, 2005, 12(1):252-260. [23] 孙叶芳, 谢正苗, 徐建明, 等. TCLP法评价矿区土壤重金属的生态环境风险[J]. 环境科学, 2005, 26(3):152-156. SUN Y F, XIE Z M, XU J M, et al. Assessment of toxicity of heavy metal contaminated soils by toxicity characteristic leaching procedure[J]. Environmental Science, 2005, 26(3):152-156(in Chinese).
[24] 林云青, 章钢娅, 许敏, 等. 添加凹凸棒土和钠基蒙脱石对铜锌镉污染红壤的改良效应研究[J]. 土壤, 2009, 41(6):892-896. LIN Y Q, ZHANG G Y, XU M, et al. Studies on modified effects of attapulgite and Na-montmorillonite on Cu-Zn-Cd contaminated red soil[J]. Soil, 2009, 41(6):892-896(in Chinese).
[25] SUN Y, SUN G H, XU Y M, et al. Assessment of natural sepiolite on cadmium stabilization, microbial communities, and enzyme activities in acidic soil[J]. Environmental Science and Pollution Research, 2013, 20(5):3290-3299. [26] 王林, 徐应明, 梁学峰, 等. 生物炭和鸡粪对镉低积累油菜吸收镉的影响[J]. 中国环境科学, 2014, 34(11):2851-2858. WANG L, XU Y M, LIANG X F, et al. Effects of biochar and chicken manure on cadmium uptake in pakchoi cultivars with low cadmium accumulation[J]. China Environmental Science, 2014, 34(11):2851-2858(in Chinese).
[27] 王永昕. 有机肥对粘土材料钝化修复镉污染菜地的效应影响[D]. 沈阳:沈阳农业大学, 2016. WANG Y X. Effect of organic manure on the remediation of cadmium contaminated vegetable soil by clay materials[D]. Shenyang:Agricultural University of Shenyang, 2016(in Chinese). [28] WANG M, ZOU J H, DUAN X C, et al. Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.)[J]. Bioresource Technology, 2007, 98(1):82-88. [29] 曹莹, 黄瑞冬, 李建东, 等. 铅和镉复合胁迫下玉米对镉吸收特性[J]. 生态学杂志, 2006, 25(11):1425-1427. CAO Y, HUANG R D, LI J D, et al. Cadmium absorption characteristics of Zea mays under combined stress of lead and cadmium[J]. Chinese Journal of Ecology, 2006, 25(11):1425-1427(in Chinese).
[30] SHI Y, HUANG Z B, LIU X J, et al. Environmental materials for remediation of soils contaminated with lead and cadmium using maize (Zea mays L.) growth as a bioindicator[J]. Environmental Science and Pollution Research, 2016, 23(7):6168-6178. [31] GUO X, WEI Z B, WU Q T, et al. Cadmium and zinc accumulation in maize grain as affected by cultivars and chemical fixation amendments[J]. Pedosphere, 2011, 21(5):650-656. [32] [33] 刘淑英. 不同施肥对西北半干旱区土壤脲酶和土壤氮素的影响及其相关性[J]. 水土保持学报, 2010, 24(1):219-223. LIU S Y. Effects of different fertilization on soil urease, nitrogen and their correlation in semiarid area of Northwest China[J]. Journal of Soil and Water Conservation, 2010, 24(1):219-223(in Chinese).
[34] 黄娟, 李稹, 张健. 改良靛酚蓝比色法测土壤脲酶活性[J]. 土木建筑与环境工程, 2012, 34(1):102-107. HUANG J, LI Z, ZHANG J. Improvement of indophenol blue colorimetric method onactivity of urease in soil[J]. Journal of Civil, Architectural & Environmental Engineering, 2012, 4(1):102-107(in Chinese).
[35] 吴金水. 土壤微生物生物量测定方法及其应用[M]. 北京:气象出版社, 2006. WU J S. Determination of soil microbial biomass and its application[M]. Beijing:Meteorological Press, 2006(in Chinese). [36] 康莉, 周文生, 侯翠红, 等. 脲酶抑制剂的研究综述[J]. 河南化工, 2009,26(2):8-10. KANG L, ZHOU W S, HOU C H.et al. Review on the research of urease inhibitors[J]. Henan Chemical Industry, 2009, 26(2):8-10(in Chinese).
[37] 杜志敏, 郝建设, 周静, 等. 四种改良剂对Cu、Cd复合污染土壤中Cu、Cd形态和土壤酶活性的影响[J]. 生态环境学报, 2011, 20(10):1507-1512. DU Z M, HAO J S, ZHOU J, et al. Effects of four amendments on Cu and Cd forms and soil enzyme activity in Cu-Cd polluted soil[J]. Ecology and Environmental Sciences, 2011, 20(10):1507-1512(in Chinese).
[38] 王永昕, 孙约兵, 徐应明, 等. 施用鸡粪对海泡石钝化修复镉污染菜地土壤的强化效应及土壤酶活性影响[J]. 环境化学, 2016, 35(1):159-169. WANG Y X, SUN Y B, XU Y M, et al. Enhancement of chicken manure on the immobilization remediation of cadmium contaminated vegetable soil and enzyme activity using sepiolite[J]. Environmental Chemistry, 2016, 35(1):159-169(in Chinese).
[39] 郭荣荣, 袁旭音, 陈红燕, 等. 骨炭对复合污染土壤生物活性的修复及其时间效应[J]. 农业环境科学学报, 2014,33(5):913-919. GUO R R, YUAN X Y, CHEN H Y, et al. Bone char restoration of biological activities in soil and plant under combined heavy metal pollution[J]. Journal of Agro-Environment Science, 2014, 33(5):913-919(in Chinese).
[40] 李学梅. 食用菌菌渣的开发利用[J]. 河南农业科学, 2003(5):40-42. LI X M. Development and utilization of edible fungi residue[J]. Journal of Henan Agricultural Sciences, 2003 (5):40-42(in Chinese).
[41] 马嘉伟, 黄其颖, 程礼泽, 等. 菌渣化肥配施对红壤养分动态变化及水稻生长的影响[J]. 浙江农业学报, 2013, 25(1):147-151. MA J W, HUANG Q Y, CHENG L Z, et al. Effect of edible fungus residue on dynamic changes of red soil nutrients and rice yield[J]. Acta Agriculture Zhejiangensis, 2013, 25(1):147-151(in Chinese).
[42] 金兰淑, 申龙, 刘艳茹, 等. 鸡粪与四环素对土壤脲酶和磷酸酶活性的影响[J]. 农业环境科学学报, 2013, 32(5):986-990. JIN L S, SHEN L, LIU Y R, et al. Effect of chicken manure and tetracycline on soil urease and phosphatase activity[J]. Journal of Agro-Environment Science, 2013, 32(5):986-990(in Chinese).
[43] 徐奕, 赵丹, 徐应明, 等. 膨润土对轻度镉污染土壤钝化修复效应研究[J]. 农业资源与环境学报, 2017, 34(1):38-46. XU Y, ZHAO D, XU Y M, et al. Immobilization and remediation of low-level Cd contaminated soil using bentonite[J]. Journal of Agro-Environment Science, 2017, 34(1):38-46(in Chinese).
[44] 于寒, 梁烜赫, 张玉秋, 等. 不同秸秆还田方式对玉米根际土壤微生物及酶活性的影响[J]. 农业资源与环境学报, 2015,32(3):305-311. YU H, LIANG X H, ZHANG Y Q, et al. Effects of different straw returning modes on the soil microorganism and enzyme activity in corn field[J]. Journal of Agricultural Resources and Environment, 2015, 32(3):305-311(in Chinese).
计量
- 文章访问数: 1049
- HTML全文浏览数: 962
- PDF下载数: 209
- 施引文献: 0