光子晶体在环境污染物快速检测方面的研究进展

汪彩琴, 唐淑阁, 刘辉, 李亚, 马新华, 李晓丽, 袁宝明, 刘楠. 光子晶体在环境污染物快速检测方面的研究进展[J]. 环境化学, 2018, 37(1): 25-31. doi: 10.7524/j.issn.0254-6108.2017060301
引用本文: 汪彩琴, 唐淑阁, 刘辉, 李亚, 马新华, 李晓丽, 袁宝明, 刘楠. 光子晶体在环境污染物快速检测方面的研究进展[J]. 环境化学, 2018, 37(1): 25-31. doi: 10.7524/j.issn.0254-6108.2017060301
WANG Caiqin, TANG Shuge, LIU Hui, LI Ya, MA Xinhua, LI Xiaoli, YUAN Baoming, LIU Nan. Application of photonic crystals in the rapid detection of environmental pollutants[J]. Environmental Chemistry, 2018, 37(1): 25-31. doi: 10.7524/j.issn.0254-6108.2017060301
Citation: WANG Caiqin, TANG Shuge, LIU Hui, LI Ya, MA Xinhua, LI Xiaoli, YUAN Baoming, LIU Nan. Application of photonic crystals in the rapid detection of environmental pollutants[J]. Environmental Chemistry, 2018, 37(1): 25-31. doi: 10.7524/j.issn.0254-6108.2017060301

光子晶体在环境污染物快速检测方面的研究进展

  • 基金项目:

    国家863计划"青年科学家专题"(SS2015AA020940),国家自然科学基金(81472941,81273078)和天津市自然科学基金重点项目(16JCZDJC39500)资助.

Application of photonic crystals in the rapid detection of environmental pollutants

  • Fund Project: Supported by the National 863 Young Scientist Program (SS2015AA020940),National Natural Science Foundation of China (Grant 81472941, 81273078) and Natural Science Foundation of Tianjin City (16JCZDJC39500).
  • 摘要: 光子晶体是近年发展起来应用广泛的一种可视化的新型光学调控型快速检测材料,本文综述了光子晶体的光学特性及其制备方法和研究现状;以及光子晶体悬浮阵列技术、分子印迹光子晶体技术、光子晶体-金属纳米复合体系的光学增强效应等在环境污染物检测方面的新应用,展示了光子晶体巨大的应用前景,并指出了光子晶体的应用趋势以及需要克服的技术难题.
  • 加载中
  • [1] 程梦婷, 刘倩, 刘稷燕, 等. 石墨烯在环境有机污染物分析中的应用进展[J]. 环境化学, 2014, 33(10):1733-1743.

    CHENG M T, LIU Q, LIU J Y, et al. Recent advances in application of graphene in analysis of environmental organic pollutants[J]. Environmental Chemistry, 2014, 33(10):1733-1743(in Chinese).

    [2] CHEN B T, ZOU L, WU Z, et al. The application of quantum dots in aquaculture pollution detection[J]. Toxicological & Environmental Chemistry, 2016, 98(3/4):385-394.
    [3] SUN Y, XU J, LI W, et al. Simultaneous detection of ochratoxin A and fumonisin B1 in cereal samples using an aptamer-photonic crystal encoded suspension array[J]. Analytical Chemistry, 2014, 86(23):11797-11802.
    [4] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20):2059-2062.
    [5] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23):2486-2489.
    [6] ZHANG J, YANG S Y, TIAN Y, et al. Dual photonic-bandgap optical films towards the generation of photonic crystal-derived 2-dimensional chemical codes[J]. Chemical Communications, 2015, 51(52):10528-10531.
    [7] CHELNOKOV A, DAVID, WANG K, et al. Fabrication of 2-D and 3-D silicon photonic crystals by deep etching[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(4):919-927.
    [8] TAN Z, FENG Z H, YU L P. Preparation and characterization of bowl-like porous ZnO film by electrodeposition using two-dimensional photonic crystal template[J]. Journal of Materials Science:Materials in Electronics, 2013, 24(7):2630-2635.
    [9] ELBADAWI C, TRAN T T, KOLIBAL M, et al. Electron beam directed etching of hexagonal boron nitride[J]. Nanoscale, 2016, 8(36):16182-16186.
    [10] ENGLUND D, FARAON A, FUSHMAN I, et al. Controlling cavity reflectivity with a single quantum dot[J]. Nature, 2007, 450(7171):857-861.
    [11] DIVLIANSKY I B, SHISHIDO A, KHOO I C, et al. Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of Cd-Se[J]. Applied Physics Letters, 2001, 79(21):3392-3394.
    [12] GRISHINA D A, HARTEVELD C A M, WOLDERING L A, et al. Method for making a single-step etch mask for 3D monolithic nanostructures[J]. Nanotechnology, 2015, 26(50):1-10.
    [13] SPARNACCI K, ANTONIOLI D, DEREGIBUS S, et al. Preparation, properties, and self-assembly behavior of PTFE-based core-shell nanospheres[J]. Journal of Nanomaterials, 2012, 2012(3):1-15.
    [14] ASKAR K, LEO S Y, XU C, et al. Rapid electrostatics-assisted layer-by-layer assembly of near-infrared-active colloidal photonic crystals[J]. Journal of Colloid and Interface Science, 2016, 7(482):89-94.
    [15] GAO W H, RIGOUT M, OWENS H. Self-assembly of silica colloidal crystal thin films with tuneable structural colours over a wide visible spectrum[J]. Applied Surface Science, 2016, 380(11):12-15.
    [16] 由爱梅, 曹玉华, 曹光群. 胶态磁组装光子晶体及其离子强度响应[J]. 高等学校化学学报, 2016, 38(3):479-483.

    YOU A M, CAO Y H, CAO G Q. Colloidal magnetically assembled photonic crystals and ionic strength sensing[J]. Chemical Journal of Chinese Universities, 2016, 38(3):479-483(in Chinese).

    [17] HE L, WANG M S, ZHANG Q, et al. Magnetic assembly and patterning of general nanoscale materials through nonmagnetic templates[J]. Nano Letters, 2012, 13(1):264-271.
    [18] WANG M S, HE L, XU W J, et al. Magnetic assembly and field-tuning of ellipsoidal-nanoparticle-based colloidal photonic crystals[J]. Angewandte Chemie International Edition, 2015, 54(24):7077-7081.
    [19] 刘楠. 悬浮芯片技术在典型环境化学污染物多元检测中的应用[J]. 中华预防医学杂志, 2013, 47(6):494-496.

    LIU N. The application of the multiple detection for typical environmental chemical pollutants by suspension array[J]. Chinese Journal of Preventive Medicine, 2013, 47(6):494-496(in Chinese).

    [20] WANG X, MU Z D, SHANG GUAN F Q, et al. Simultaneous detection of fenitrothion and chlorpyrifos-methyl with a photonic suspension array[J]. PLOS ONE, 2013, 8(6):e66703.
    [21] GONZÁLEZ-CURBELO M Á, HERNÁNDEZ-BORGES J, RAVELO-PÉREZ L M, et al. Insecticides extraction from banana leaves using a modified QuEChERS method[J]. Food Chemistry, 2011, 125(3):1083-1090.
    [22] ESKANDARI H, NADERI-DAREHSHORI A. Preparation of magnetite/poly(styrene-divinylbenzene) nanoparticles for selective enrichment-determination of fenitrothion in environmental and biological samples[J]. Analytica Chimica Acta, 2012, 743(18):137-144.
    [23] HUANG Y, LI F Y, QIN M, et al. A multi-stopband photonic-crystal microchip for high-performance metal-ion recognition based on fluorescent detection[J]. Angewandte Chemie International Edition, 2013, 52(28):7296-7299.
    [24] HOU J, ZHANG H C, YANG Q, et al. Bio-Inspired photonic-crystal microchip for fluorescent ultratrace detection[J]. Angewandte Chemie International Edition, 2014, 53(23):5791-5795.
    [25] YANG Y, LI W, SHEN P, et al. Aptamer fluorescence signal recovery screening for multiplex mycotoxins in cereal samples based on photonic crystal microsphere suspension array[J]. Sensors and Actuators B:Chemical, 2017, 253(248):351-358.
    [26] DENG G D, XU K, SUN Y, et al. High sensitive immunoassay for multiplex mycotoxin detection with photonic crystal microsphere suspension array[J]. Analytical Chemistry, 2013, 85(5):2833-2840.
    [27] XU K, SUN Y, LI W, et al. Multiplex chemiluminescent immunoassay for screening of mycotoxins using photonic crystal microsphere suspension array[J]. Analyst, 2014, 139(4):771-777.
    [28] XU J, LI W, LIU R, et al. Ultrasensitive low-background multiplex mycotoxin chemiluminescence immunoassay by silica-hydrogel photonic crystal microsphere suspension arrays in cereal samples[J]. Sensors and Actuators B:Chemical, 2016, 232(2):577-584.
    [29] MUDILI V, MAKAM S, SUNDARARAJ N, et al. A novel IgY-Aptamer hybrid system for cost-effective detection of SEB and its evaluation on food and clinical samples[J]. Scientific Reports, 2015, 5(10):1-12.
    [30] HAN J H, KIM H J, SUDHEENDRA L, et al. Photonic crystal lab-on-a chip for detecting staphylococcal enterotoxin B at low attomolar concentration[J]. Analytical Chemistry, 2013, 85(6):3104-3109.
    [31] WANG X, MU Z D, LIU R, et al. Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid[J]. Food Chemistry, 2013, 141(4):3947-3953.
    [32] WU Z, TAO C A, LIN C X, et al. Label-free colorimetric detection of trace atrazine in aqueous solution by using molecularly imprinted photonic polymers[J].Chemistry, 2008, 14(36):11358-11368.
    [33] 兰小波, 赵文斌, 王梦凡, 等. 分子印迹光子晶体传感芯片的制备及对邻苯二甲酸酯类化合物的检测[J]. 分析化学, 2015, 43(4):471-478.

    LAN X B, ZHAO W B, WANG M F, et al. Preparation of molecular imprinted photonic crystal sensor and its application in determination of phthalate esters[J]. Chinese Journal of Analytical Chemistry, 2015, 43(4):471-478(in Chinese).

    [34] SAI N, WU Y T, SUN Z, et al. Molecular imprinted opal closest-packing photonic crystals for the detection of trace 17β-estradiol in aqueous solution[J].Talanta, 2015, 144(1):157-162.
    [35] GUO C, ZHOU C H, SAI N, et al. Detection of bisphenol A using an opal photonic crystal sensor[J]. Sensors and Actuators B:Chemical, 2012, s166-167(10):17-23.
    [36] GRIFFETE N, FREDERICH H, MAITRE A, et al. Introduction of a planar defect in a molecularly imprinted photonic crystal sensor for the detection of bisphenol A[J]. Sensors and Actuators B:Chemical, 2011, 364(1):18-23.
    [37] ZHANG Y N, HUANG S M, QIAN C T, et al. Preparation of cinchonine molecularly imprinted photonic crystal film and its specific recognition and optical responsive properties[J]. Journal of Applied Polymer Science, 2016, 133(11):43191-43198.
    [38] LIU F, HUANG S Y, XUE F, et al. Detection of organophosphorus compounds using a molecularly imprinted photonic crystal[J]. Biosensors and Bioelectronics, 2012, 32(1):273-277.
    [39] 杨兆昆, 张晓栋, 施冬健, 等. L-色氨酸分子印迹PC水凝胶膜的制备及性能[J]. 高等学校化学学报, 2016, 37(1):37-42.

    YANG Z K, ZHANG X D, SHI D J, et al. Preparation and characterization of L-tryptophan molecularly imprinted photonic hydrogels[J]. Chemical Journal of Chinese University, 2016, 37(1):37-42(in Chinese).

    [40] HOU J, ZHANG H C, YANG Q, et al. Hydrophilic-hydrophobic patterned molecularly imprinted photonic crystal sensors for high-sensitive colorimetric detection of tetracycline[J]. Small, 2015, 11(23):2738-2742.
    [41] YOU A M, CAO Y H, CAO G Q. Colorimetric sensing of melamine using colloidal magnetically assembled molecularly imprinted photonic crystals[J]. RSC Advances, 2016, 6(87):83663-83667.
    [42] BRADLEY E B, FRENZEL C. On the exploitation of laser raman spectroscopy for detection and identification of molecular water pollutants[J]. Water Research, 1970, 4(1):125-128.
    [43] 刘绍根, 尹君, 郑煜铭, 等.基于柔性SERS基底的快速原位检测环境污染物的方法[J]. 环境科学学报, 2014, 34(8):2157-2162.

    LIU S G,YIN J, ZHEN Y M, et al. Flexible SERS substrates-based in situ method for rapid detection of environmental pollutant[J]. Acta Scientiae Circumstantiae, 2014, 34(8):2157-2162(in Chinese).

    [44] SABRI Y M, KANDJANI A E, IPPOLITO S J, et al. Nanosphere monolayer on a transducer for enhanced detection of gaseous heavy metal[J]. ACS Applied Materials and Interfaces, 2015, 7(3):1491-1499.
    [45] YANG J, RORRER G L, WANG A X. Bioenabled SERS substrates for food safety and drinking water monitoring[J]. Proceedings of SPIE-the International Society for Optical Engineering, 2015, 22(12):9488-9495.
    [46] KONG X M, XI Y T, DUFF P, et al. Detecting explosive molecules from nanoliter solution:A new paradigm of SERS sensing on hydrophilic photonic crystal biosilica[J]. Biosensors and Bioelectronics, 2017, 88(7):63-70.
    [47] ZHANG Q, JANNER M, HE L, et al. Photonic labyrinths:Two-dimensional dynamic magnetic assembly and in situ solidification[J]. Nano Letters, 2013, 13(4):1770-1775.
    [48] SADROLHOSSEINI A R, NASERI M, KAMARI H M. Surface plasmon resonance sensor for detecting of arsenic in aqueous solution using polypyrrole-chitosan-cobalt ferrite nanoparticles composite layer[J]. Optics Communications, 2017, 383(9):132-137.
    [49] 由爱梅, 倪鑫炯, 曹玉华, 等. 胶态磁组装分子印迹光子晶体及其对L-苯丙氨酸的响应性[J]. 高等学校化学学报,2017, 38(2):182-186.

    YOU A M,NI X J,CAO Y H, et al. Colloidal magnetically assembled molecularly imprinted photonic crystals and L-phenylalanine sensing[J]. Chemical Journal of Chinese Universities,2017, 38(2):182-186(in Chinese).

    [50] FU F F, CHEN Z Y, ZHAO Z, et al. Bio-inspired self-healing structural color hydrogel.[J]. Proceedings of the National Academy of Sciences, 2017, 114(23):5900-5905.
  • 加载中
计量
  • 文章访问数:  1306
  • HTML全文浏览数:  1184
  • PDF下载数:  379
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-06-03
  • 刊出日期:  2018-01-15
汪彩琴, 唐淑阁, 刘辉, 李亚, 马新华, 李晓丽, 袁宝明, 刘楠. 光子晶体在环境污染物快速检测方面的研究进展[J]. 环境化学, 2018, 37(1): 25-31. doi: 10.7524/j.issn.0254-6108.2017060301
引用本文: 汪彩琴, 唐淑阁, 刘辉, 李亚, 马新华, 李晓丽, 袁宝明, 刘楠. 光子晶体在环境污染物快速检测方面的研究进展[J]. 环境化学, 2018, 37(1): 25-31. doi: 10.7524/j.issn.0254-6108.2017060301
WANG Caiqin, TANG Shuge, LIU Hui, LI Ya, MA Xinhua, LI Xiaoli, YUAN Baoming, LIU Nan. Application of photonic crystals in the rapid detection of environmental pollutants[J]. Environmental Chemistry, 2018, 37(1): 25-31. doi: 10.7524/j.issn.0254-6108.2017060301
Citation: WANG Caiqin, TANG Shuge, LIU Hui, LI Ya, MA Xinhua, LI Xiaoli, YUAN Baoming, LIU Nan. Application of photonic crystals in the rapid detection of environmental pollutants[J]. Environmental Chemistry, 2018, 37(1): 25-31. doi: 10.7524/j.issn.0254-6108.2017060301

光子晶体在环境污染物快速检测方面的研究进展

  • 1.  兰州大学公共卫生学院, 兰州, 730000;
  • 2.  广州医科大学公共卫生学院, 广州, 511436;
  • 3.  军事科学院军事医学科学院环境医学与作业医学研究所, 天津, 300050
基金项目:

国家863计划"青年科学家专题"(SS2015AA020940),国家自然科学基金(81472941,81273078)和天津市自然科学基金重点项目(16JCZDJC39500)资助.

摘要: 光子晶体是近年发展起来应用广泛的一种可视化的新型光学调控型快速检测材料,本文综述了光子晶体的光学特性及其制备方法和研究现状;以及光子晶体悬浮阵列技术、分子印迹光子晶体技术、光子晶体-金属纳米复合体系的光学增强效应等在环境污染物检测方面的新应用,展示了光子晶体巨大的应用前景,并指出了光子晶体的应用趋势以及需要克服的技术难题.

English Abstract

参考文献 (50)

返回顶部

目录

/

返回文章
返回