用于CO2捕集的金属有机框架(MOFs)材料改性研究进展

葛慧, 苗媛媛, 赵云霞, 蔡炜, 黄琼, 吕宸, 薛蓉杰. 用于CO2捕集的金属有机框架(MOFs)材料改性研究进展[J]. 环境化学, 2018, 37(1): 32-40. doi: 10.7524/j.issn.0254-6108.2017060803
引用本文: 葛慧, 苗媛媛, 赵云霞, 蔡炜, 黄琼, 吕宸, 薛蓉杰. 用于CO2捕集的金属有机框架(MOFs)材料改性研究进展[J]. 环境化学, 2018, 37(1): 32-40. doi: 10.7524/j.issn.0254-6108.2017060803
GE Hui, MIAO Yuanyuan, ZHAO Yunxia, CAI Wei, HUANG Qiong, LYU Chen, XUE Rongjie. Research progress of modified metal-organic frameworks for CO2 capture[J]. Environmental Chemistry, 2018, 37(1): 32-40. doi: 10.7524/j.issn.0254-6108.2017060803
Citation: GE Hui, MIAO Yuanyuan, ZHAO Yunxia, CAI Wei, HUANG Qiong, LYU Chen, XUE Rongjie. Research progress of modified metal-organic frameworks for CO2 capture[J]. Environmental Chemistry, 2018, 37(1): 32-40. doi: 10.7524/j.issn.0254-6108.2017060803

用于CO2捕集的金属有机框架(MOFs)材料改性研究进展

  • 基金项目:

    南京信息工程大学大学生实践创新训练计划项目(201610300065Y),江苏省自然科学基金(BK20150892),江苏省高校自然科学研究面上项目(15KJB610012)和江苏省环境科学品牌专业资助项目(PPZY2015C222)资助.

Research progress of modified metal-organic frameworks for CO2 capture

  • Fund Project: Supported by the Undergraduate Innovation Training Program of Nanjing University of Information Science and Technology (201610300065Y), Natural Science Foundation of Jiangsu Province of China (BK20150892), Natural Science Foundation of Jiangsu Higher Education Institution of China (15KJB610012) and Environmental Science Brand Major of Jiangsu Province (PPZY2015C222).
  • 摘要: CO2作为全球变暖和气候变化的主要责任者,它的减排刻不容缓.多孔材料吸附被认为是目前最具潜力的CO2捕集方法之一.在众多多孔吸附剂中,金属有机框架(MOFs)材料因高孔率、可调性等特点在气体捕集方面具有显著优势.本文综述了MOFs材料用于CO2捕集的研究进展,阐述了为提高CO2吸附容量与吸附选择性的MOFs材料的多种改性方法.简单介绍了MOFs材料的循环再生性以及在CO2吸附过程中抗杂质气体的稳定性,并对MOFs材料作为吸附剂应用于实际气源的前景进行了展望.
  • 加载中
  • [1] LI H, EDDAOUDI M,O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759):276-279.
    [2] SEOANE B, CASTELLANOS S, DIKHTIARENKO A, et al. Multi-scale crystal engineering of metal organic frameworks[J]. Coordination Chemistry Reviews, 2016, 307(2):147-187.
    [3] MILLWARD A R, YAGHI O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. Journal of the American Chemical Society, 2005, 127(51):17998-17999.
    [4] SUMIDA K, ROGOW D L, LONG J R, et al. Carbon dioxide capture in metal organic frameworks[J]. Chemical Reviews, 2012, 112:724-781.
    [5] DENG H X, GRUNDER S, YAGHI O M, et al. Large-pore apertures in a series of metal-organic frameworks[J]. Science, 2012, 336(6084):1018-1023.
    [6] MASOOMI M Y, STYLIANOU K C, MORSALI A, et al. Selective CO2 capture in metal-organic frameworks with azine-functionalized pores generated by mechanosynthesis[J]. Crystal Growth Design, 2014, 14:2092-2096.
    [7] ZHOU C, CAO L, WEI S, et al. A first principles study of gas adsorption on charged Cu-BTC[J]. Computational and Theoretical Chemistry, 2011, 976:153-160.
    [8] WU H, SIMMONS J M, SRINIVAS G, et al. Adsorption sites and binding nature of CO2 in prototypical metal-organic frameworks:A combined neutron diffraction and first-principles study[J]. The Journal of Physical Chemistry Letters, 2010, 1:1946-1951.
    [9] 颜星, 刘永生, 杨杰. 金属有机框架化合物在CO2捕集中的研究进展[J]. 天然气化工·C1化学与化工, 2016, 41(1):68-74.

    YAN X, LIU Y S, YANG J. Research progress in CO2 capture by metal organic frameworks[J]. Natural Gas Chemical Industry·C1 Chemistry and Chemical Engineering, 2016, 41(1):68-74(in Chinese).

    [10] YAZAYDIN A O, SNURR R Q, PARK T H, et al. Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach[J]. Journal of the American Chemical Society, 2009, 131:18198-18199.
    [11] BAO Z, YU L, REN Q, et al. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework[J]. Journal of Colloid and Interface Science, 2011, 353:549-556.
    [12] HAMON L, JOLIMAITRE E, PIMGRUBER G D. CO2 and CH4 separation by adsorption using Cu-BTC metal organic framework[J]. Industrial & Engineering Chemistry Research, 2010, 49:7497-7503.
    [13] YAZAYDIN A O, BENIN A I, FAHEEM S A, et al. Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules[J]. Chemistry of Materials, 2009, 21:1425-1430.
    [14] LANDAVERDE-ALVARADO C, MORRIS A J, MARTIN S M. Gas sorption and kinetics of CO2 sorption and transport in a polymorphic microporous MOF with open Zn (Ⅱ) coordination sites[J]. Journal of CO2 Utilization, 2017, 19:40-48.
    [15] ZHANG G, WEI G, FEI H, et al. A robust sulfonate-based metal-organic framework with permanent porosity for efficient CO2 capture and conversion[J]. Chemistry of Materials, 2016, 28:6276-6281.
    [16] 李鹏飞. 金属有机框架化合物UMCM-1-NH2的后合成修饰及固态发光研究[D]. 南昌:南昌大学, 2013. LI P F. Postsynthetic modification of metal-organic framework UMCM-1-NH2 and the research of solid luminescence[D]. Nanchang:Nanchang University, 2013

    (in Chinese).

    [17] MCDONALD T M, LEE W R, LONG J R, et al. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc)[J]. Journal of the American Chemical Society, 2012, 134:7056-7065.
    [18] SU X, BROMBERG L, HATTON T A, et al. Postsynthetic functionalization of Mg-MOF-74 with tetraethylenepentamine:Structural characterization and enhanced CO2 adsorption[J]. ACS Applied Materials & Interfaces, 2017, 9(12):11299-11306.
    [19] BANERJEE R, FURUKAWA H, BRITT D, et al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties[J]. Journal of the American Chemical Society, 2009, 131:3875-3877.
    [20] ZHANG Z, ZHAO Y, GONG Q, et al. MOFs for CO2 capture and separation from flue gas mixtures:The effect of multifunctional sites on their adsorption capacity and selectivity[J]. Chemical Communications, 2013, 49:653-661.
    [21] LU W, WEI Z, GU Z Y, et al. Tuning the structure and function of metal-organic frameworks via linker design[J]. Chemical Society Reviews, 2014, 43:5561-5593.
    [22] 张秀芳, 安晓辉, 刘大欢, 等. 离子交换对usf-ZMOF二氧化碳吸附能力影响的研究[J]. 化学学报, 2011, 69(1):84-88.

    ZHANG X F, AN X H,LIU D H, et al. Study of the influence of ion-exchange on carbon dioxide adsorption capacity in usf-ZMOF[J]. Journal of Chemistry, 2011, 69(1):84-88(in Chinese).

    [23] ZHOU Z, MEI L, MA C, et al. A novel bimetallic MIL-101(Cr, Mg) with high CO2 adsorption capacity and CO2/N2 selectivity[J]. Chemical Engineering Science, 2016, 147:109-117.
    [24] XIN C, JIAO X, YIN Y, et al. Enhanced CO2 adsorption capacity and hydrothermal stability of HKUST-1 via introduction of siliceous mesocellular foams (MCFs)[J]. Industrial & Engineering Chemistry Research, 2016, 55:7950-7957.
    [25] YU J, MU C, PANG H, et al. Nanoparticle/MOF composites:preparations and applications[J]. Materials Horizons, 2017, DOI:10.1039/C6MH00586A.
    [26] CAO Y, ZHAO Y, SONG F, et al. Alkali metal cation doping of metal-organic framework for enhancing carbon dioxide adsorption capacity[J]. Journal of Energy Chemistry, 2014, 23:468-474.
    [27] TARI N E, TADJARODI A, TAMNANLOO J, et al. One pot microwave synthesis of MCM-41/Cu based MOF composite with improved CO2 adsorption and selectivity[J]. Microporous and Mesoporous Materials, 2016, 231:154-162.
    [28] DARUNTE L A, OETOMO A D, WALTON K S, et al. Direct air capture of CO2 using amine functionalized MIL-101(Cr)[J]. ACS Sustainable Chemistry & Engineering, 2016, 4:5761-5768.
    [29] YU J, MA Y, Balbuena P B. Evaluation of the impact of H2O, O2, and SO2 on postcombustion CO2 capture in metal-organic frameworks[J]. Langmuir, 2012, 28:8064-8071.
    [30] TAN K, ZULUAGA S, Gong Q, et al. Competitive coadsorption of CO2 with H2O, NH3, SO2, NO, NO2, N2, O2, and CH4 in M-MOF-74(M=Mg, Co, Ni):the role of hydrogen bonding[J]. Chemistry of Materials, 2015, 27:2203-2217.
    [31] BABARAO R, JIANG J W. Upgrade of natural gas in rho zeolite like metal-organic framework and effect of water:A computational study[J]. Energy & Environmental Science Energy, 2009, 2(10):1088-1093.
    [32] YU J, WU Y, BALBUENA P B. Response of metal sites toward water effects on postcombustion CO2 capture in metal-organic frameworks[J]. ACS Sustainable Chemistry & Engineering, 2016, 4:2387-2394.
    [33] CADIAN A, BELMABKHOUT Y, EDDAOUDI M, et al. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration[J]. Science, 2017, 356:731-735.
    [34] ZHU X, ZHOU X, LI D. Exceptionally water stable heterometallic gyroidal MOFs:Tuning the porosity and hydrophobicity by doping metal ions[J]. Chemical Communications, 2016, 52:6513-6516.
  • 加载中
计量
  • 文章访问数:  5063
  • HTML全文浏览数:  4939
  • PDF下载数:  754
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-06-08
  • 刊出日期:  2018-01-15
葛慧, 苗媛媛, 赵云霞, 蔡炜, 黄琼, 吕宸, 薛蓉杰. 用于CO2捕集的金属有机框架(MOFs)材料改性研究进展[J]. 环境化学, 2018, 37(1): 32-40. doi: 10.7524/j.issn.0254-6108.2017060803
引用本文: 葛慧, 苗媛媛, 赵云霞, 蔡炜, 黄琼, 吕宸, 薛蓉杰. 用于CO2捕集的金属有机框架(MOFs)材料改性研究进展[J]. 环境化学, 2018, 37(1): 32-40. doi: 10.7524/j.issn.0254-6108.2017060803
GE Hui, MIAO Yuanyuan, ZHAO Yunxia, CAI Wei, HUANG Qiong, LYU Chen, XUE Rongjie. Research progress of modified metal-organic frameworks for CO2 capture[J]. Environmental Chemistry, 2018, 37(1): 32-40. doi: 10.7524/j.issn.0254-6108.2017060803
Citation: GE Hui, MIAO Yuanyuan, ZHAO Yunxia, CAI Wei, HUANG Qiong, LYU Chen, XUE Rongjie. Research progress of modified metal-organic frameworks for CO2 capture[J]. Environmental Chemistry, 2018, 37(1): 32-40. doi: 10.7524/j.issn.0254-6108.2017060803

用于CO2捕集的金属有机框架(MOFs)材料改性研究进展

  • 1. 南京信息工程大学环境科学与工程学院,江苏省大气环境监测与污染控制高技术研究重点实验室, 南京, 210044
基金项目:

南京信息工程大学大学生实践创新训练计划项目(201610300065Y),江苏省自然科学基金(BK20150892),江苏省高校自然科学研究面上项目(15KJB610012)和江苏省环境科学品牌专业资助项目(PPZY2015C222)资助.

摘要: CO2作为全球变暖和气候变化的主要责任者,它的减排刻不容缓.多孔材料吸附被认为是目前最具潜力的CO2捕集方法之一.在众多多孔吸附剂中,金属有机框架(MOFs)材料因高孔率、可调性等特点在气体捕集方面具有显著优势.本文综述了MOFs材料用于CO2捕集的研究进展,阐述了为提高CO2吸附容量与吸附选择性的MOFs材料的多种改性方法.简单介绍了MOFs材料的循环再生性以及在CO2吸附过程中抗杂质气体的稳定性,并对MOFs材料作为吸附剂应用于实际气源的前景进行了展望.

English Abstract

参考文献 (34)

返回顶部

目录

/

返回文章
返回