南沙海域沉积物岩心中238U和40K的测定及深度变化

陈俊畅, 夏良树, 麻卓然, 曹修齐, 黄炎傲, 王凤蝶, 彭安国, 刘广山. 南沙海域沉积物岩心中238U和40K的测定及深度变化[J]. 环境化学, 2018, 37(5): 968-973. doi: 10.7524/j.issn.0254-6108.2017070403
引用本文: 陈俊畅, 夏良树, 麻卓然, 曹修齐, 黄炎傲, 王凤蝶, 彭安国, 刘广山. 南沙海域沉积物岩心中238U和40K的测定及深度变化[J]. 环境化学, 2018, 37(5): 968-973. doi: 10.7524/j.issn.0254-6108.2017070403
CHEN Junchang, XIA Liangshu, MA Zhuoran, CAO Xiuqi, HUANG Yan, WANG Fengdie, PENG Anguo, LIU Guangshan. Determination of 238U and 40K in sediment cores in Nansha sea area and their depth profiles[J]. Environmental Chemistry, 2018, 37(5): 968-973. doi: 10.7524/j.issn.0254-6108.2017070403
Citation: CHEN Junchang, XIA Liangshu, MA Zhuoran, CAO Xiuqi, HUANG Yan, WANG Fengdie, PENG Anguo, LIU Guangshan. Determination of 238U and 40K in sediment cores in Nansha sea area and their depth profiles[J]. Environmental Chemistry, 2018, 37(5): 968-973. doi: 10.7524/j.issn.0254-6108.2017070403

南沙海域沉积物岩心中238U和40K的测定及深度变化

  • 基金项目:

    国家级大学生创新创业训练计划支持项目(201610555005)资助.

Determination of 238U and 40K in sediment cores in Nansha sea area and their depth profiles

  • Fund Project: Supported by National Undergraduate Innovation and Entrepreneurship Training Program Support Projects(201610555005).
  • 摘要: 用HPGe γ 谱方法测定了6个来自南沙海域沉积物岩心的238U和40K,获得结果如下:238U的放射性活度变化范围为(13.87±1.73)—(46.63±3.08) Bq·kg-1,平均值的变化范围为(19.30±1.72)—(43.19±3.06) Bq·kg-1;40K的放射性活度变化范围为(147.37±8.13)—(569.35±11.11) Bq·kg-1,平均值的变化范围为(159.32±6.51)—(471.30±9.16) Bq·kg-1.与其他海域比较发现,本研究海域的238U活度范围及平均值与其他海域比较接近,而40K的活度范围与平均值则比其他海域要稍低点.这两个核素的深度变化趋势均随深度的增加有微弱的增大、减小或不明显变化的3种类型,相比较而言,40K随深度的变化幅度不如238U明显,造成这种现象的原因主要可能是沉积物组成、水动力学等.
  • 加载中
  • [1] 刘广山. 海洋放射年代学[M]. 厦门:厦门大学出版社,2016. LIU G S. Marine geochronology. [M]. Xiamen: Xiamen University Press, 2016(in Chinese).
    [2] 刘韶, 温孝胜, 余克服,等. 南沙群岛海区沉积物中铀含量与冰期关系初探[J]. 海洋地质与第四纪地质, 1999, 19(2): 49-54.

    LIU S, WEN X S,YU K F, et al. The preliminary study on the uranium concentration of the sediments from nansha islands and its relation to the glacial period[J].Marine Geology & Quaternary Geology, 1999, 19(2): 49-54(in Chinese).

    [3] 刘广山, 黄奕普, 陈敏,等. 南沙海区表层沉积物放射性核素分布特征[J]. 海洋科学, 2001, 25(8): 1-5.

    LIU G S, HUANG Y P, CHEN M, et al. Distribution features of radionuclides in surface sediments of nansha sea areas[J]. Marine sciences, 2001, 25(8): 1-5(in Chinese).

    [4] 中国科学院南沙综合科学考察队. 南沙群岛及其邻近海域铀钍沉积特征和年代研究[M]. 北京: 海洋出版社, 1996. Nansha Comprehensive Scientific Expedition of Chinese Academy of Sciences. Study on uranium thorium sedimentary characteristics and chronology of nansha islands and adjacent Sea Area[M].Beijing: China Ocean Press,1996(in Chinese).
    [5] 中国科学院南沙综合科学考察队. 南沙群岛及其邻近海域第四纪沉积地质学[M]. 武汉: 湖北科学技术出版社, 1993. Nansha Comprehensive Scientific Expedition of Chinese Academy of Sciences. Quaternary sedimentary geolory of Nansha isands and Adjacent Sea Aera[M].Wuhan:Hubei Science & Technology, 1993(in Chinese).
    [6] 罗又郎, 冯伟文, 林怀兆. 中国科学院南沙综合科学考察队编.南沙群岛及其邻近海区综合调查研究报告(下)[M]. 北京: 科学出版社, 1989. LUO Y L, FENG W W, LIN H Z. Edited by the Nansha science research team of Chinese Academy of Sciences. Comprehensive survey report of Spratly Islands and its adjacent coastal area (Part 2)[M]. Beijing: CSPM,1989(in Chinese).
    [7] 刘韶, 秦佩玲, 张惠玲. 南沙海区沉积物沉积速率的测定和沉积环境探讨[J]. 热带海洋, 1991, 10(3): 81-85.

    LIU S,QIN P L,ZHANG H L. A dission on determination of the depositional rate of sediments and environment of Nansha islands[J]. Tropic Oceanology, 1991, 10(3): 81-85(in Chinese).

    [8]
    [9] 李培泉,刘志和,卢光山,等.冲绳海槽沉积物中U, Ra, Th, 40K的地球化学研究[J].海洋与湖沼, 1984, 15(5): 457-467.

    LI P Q,LIU Z H,LU G S, et al.The geochemical studies of U, Th, Ra,K(40K) in sediments of Okinwa Trough[J]. Oceanologia Et Limnologia Sinica, 1984, 15(5): 457-467(in Chinese).

    [10] 眭良仁. 冲绳海槽的几个沉积特征[J].海洋地质研究. 1981,1(1):69-74.

    GUI L R.Several sedimentary characteristics of the Okinawa trough[J].Marine Geology research. 1981,1(1):69-74(in Chinese).

    [11] 李培泉,刘志和,卢光山,等.渤海近岸地区表层沉积物中U, Ra, Th, 40K, 137Cs的Ge(Li)γ谱仪测定及地球化学研究[J].海洋与湖沼, 1983, 14(4): 333-340.

    LI P Q,LIU Z H,LU G S, et al.Deteeminations of U, Ra, Th, 40K and 137Cs in the surface sediments in the offshore area of Western Bohai Sea with Ge(Li)γ spectrometer and its geochemical research[J]. Oceansand Limns, 1983,14(4):333-340(in Chinese).

    [12] MO TIN, SUTTLE ANDREW D, SACKETT WILLIAM M. Uranium concentration in marine sediments [J]. Geochim Cosmochim Acta,1973, 37(1): 35-51.
    [13] 胡盼盼. 南沙海域沉积物铀、碘、磷的研究[D].厦门:厦门大学, 2016. HU P P. Study on uranium, iodine and phosphorus in sediments of Nansha sea area[D].Xiamen:Xiamen University,2016(in Chinese).
    [14] 赵一阳. 中国渤海沉积物中铀的地球化学[J].地球化学, 1980, 1: 101-105. ZHAO Y Y. Geochemistry of uranium in sediments of Bohai GULF China[J]. Geochimica, 1980

    , 1: 101-105(in Chinese).

    [15] HAFIDZ A Y, CHE A R M. Vertical profiles of natural uranium isotopes in sediment cores from kota kinabalu and Labuan ports, Malaysia[J]. Environment Asia, 2015, 8(2): 85-93.
  • 加载中
计量
  • 文章访问数:  1227
  • HTML全文浏览数:  1195
  • PDF下载数:  197
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-07-04
  • 刊出日期:  2018-05-15
陈俊畅, 夏良树, 麻卓然, 曹修齐, 黄炎傲, 王凤蝶, 彭安国, 刘广山. 南沙海域沉积物岩心中238U和40K的测定及深度变化[J]. 环境化学, 2018, 37(5): 968-973. doi: 10.7524/j.issn.0254-6108.2017070403
引用本文: 陈俊畅, 夏良树, 麻卓然, 曹修齐, 黄炎傲, 王凤蝶, 彭安国, 刘广山. 南沙海域沉积物岩心中238U和40K的测定及深度变化[J]. 环境化学, 2018, 37(5): 968-973. doi: 10.7524/j.issn.0254-6108.2017070403
CHEN Junchang, XIA Liangshu, MA Zhuoran, CAO Xiuqi, HUANG Yan, WANG Fengdie, PENG Anguo, LIU Guangshan. Determination of 238U and 40K in sediment cores in Nansha sea area and their depth profiles[J]. Environmental Chemistry, 2018, 37(5): 968-973. doi: 10.7524/j.issn.0254-6108.2017070403
Citation: CHEN Junchang, XIA Liangshu, MA Zhuoran, CAO Xiuqi, HUANG Yan, WANG Fengdie, PENG Anguo, LIU Guangshan. Determination of 238U and 40K in sediment cores in Nansha sea area and their depth profiles[J]. Environmental Chemistry, 2018, 37(5): 968-973. doi: 10.7524/j.issn.0254-6108.2017070403

南沙海域沉积物岩心中238U和40K的测定及深度变化

  • 1.  南华大学核科学技术学院, 衡阳, 421001;
  • 2.  厦门大学海洋与生态学院, 厦门, 361005
基金项目:

国家级大学生创新创业训练计划支持项目(201610555005)资助.

摘要: 用HPGe γ 谱方法测定了6个来自南沙海域沉积物岩心的238U和40K,获得结果如下:238U的放射性活度变化范围为(13.87±1.73)—(46.63±3.08) Bq·kg-1,平均值的变化范围为(19.30±1.72)—(43.19±3.06) Bq·kg-1;40K的放射性活度变化范围为(147.37±8.13)—(569.35±11.11) Bq·kg-1,平均值的变化范围为(159.32±6.51)—(471.30±9.16) Bq·kg-1.与其他海域比较发现,本研究海域的238U活度范围及平均值与其他海域比较接近,而40K的活度范围与平均值则比其他海域要稍低点.这两个核素的深度变化趋势均随深度的增加有微弱的增大、减小或不明显变化的3种类型,相比较而言,40K随深度的变化幅度不如238U明显,造成这种现象的原因主要可能是沉积物组成、水动力学等.

English Abstract

参考文献 (15)

返回顶部

目录

/

返回文章
返回