冬季北黄海溶解态CH4和N2O的浓度分布及海-气交换通量
Distributions and fluxes of dissolved CH4 and N2O in the North Yellow Sea in winter
-
摘要: 2014年1月开展了北黄海表层海水中溶解态甲烷(CH4)和氧化亚氮(N2O)浓度及海水温盐等参数的观测研究.结果显示,冬季北黄海表层海水溶解态CH4和N2O的浓度范围分别为4.3—7.3 nmol·L-1和12.8—14.9 nmol·L-1,饱和度范围分别为150%—255%和128%—149%,是大气CH4和N2O的源.通过针对性开展温盐数据校正,区域和全球尺度大气CH4和N2O摩尔分数参考值的对比计算等关键过程的研究,优化提高了溶解态CH4和N2O饱和度及海-气交换通量计算方法和结果的准确度,得出1月份海-气CH4和N2O交换通量分别为6.3±5.1 μmol·m-2·d-1 和9.4±8.0 μmol·m-2·d-1 (W2014).并结合文献报道的春、夏、秋季节观测结果,将北黄海N2O年释放量修订为1.02×10-2 Tg.Abstract: Concentrations of dissolved methane (CH4) and nitrous oxide (N2O) and related parameters in surface seawater of the northern Yellow Sea were monitored in January, 2014. The concentrations of dissolved CH4 and N2O ranged from 4.3 nmol·L-1 to 7.3 nmol·L-1 and 12.8 nmol·L-1 to 14.9 nmol·L-1, respectively. And their saturations ranged from 150% to 255% and 128% to 149%, respectively, suggesting that the North Yellow Sea was a net source of atmospheric CH4 and N2O in winter. Based on the calibration of in-situ seawater temperature and salinity and the study of calculation processes by using the regional and global mean mole fractions of atmospheric CH4 and N2O, the calculation methods of saturation and air-sea flux were optimized for better accuracy. Finally, the air-sea fluxes of CH4 and N2O were 6.3±5.1 μmol·m-2·d-1 and 9.4±8.0 μmol·m-2·d-1, respectively, calculated using the Wannikhof equations of 2014. Combined with the previous research results, the annual N2O emission was recalculated to be 1.02×10-2 Tg.
-
Key words:
- North Yellow Sea /
- methane /
- nitrous oxide /
- air-sea flux
-
-
[1] 王明星,张仁健,郑循华. 温室气体的源与汇[J]. 气候与环境研究,2000,5(1):75-79. WANG M X, ZHANG R J, ZHENG X H. Sources and sinks of greenhouse gases[J]. Cliamate and Environmental Research. 2000, 5(1): 75-79 (in Chinese).
[2] BOUSQUET P, RINGEVAL B, PISON I, et al. Source attribution of the changes in atmospheric methane for 2006-2008[J]. Atmospheric Chemistry Physics, 2011, 11: 3689-3700. [3] LAW C S, BREVIERE E, LEEUW G, et al. Evolving research directions in surface ocean-lower atmosphere (SOLAS) science[J]. Environmental Chemistry, 2013, 10: 1-16. [4] BATES T S, KELLY K C, JOHNSON J E, et al. A revaluation of the open ocean source of methane to the atmosphere[J]. Journal of Geophysical Research, 1996, 101: 6953-6961. [5] NEVISION C D, WEISS R F, ERICKSON D J, et al. Global oceanic emissions of nitrous oxide[J]. Journal of Geophysical Research, 1995, 100(C8): 15809-15820. [6] BANGE H W. New directions: The importance of the oceanic nitrous oxide emissions[J]. Atmospheric Environmental, 2006, 40(1): 198-199. [7] BANGE H W, DAHLKE S, RAMECH R, et al. Seasonal study of methane and nitrous in the coastal waters of the southern Baltic Sea[J]. Estuarine, Coastal and Shelf Science, 1998, 47: 807-817. [8] LAL S, PATRA P K. Variabilities in the fluxes and annual emissions of nitrous oxide from the Arabian Sea[J]. Global Biogeochemical Cycles, 1998, 12(2): 321-327. [9] CLARK J F, WASHBURN L, HORNAFIUS J S, et al. Dissolved hydrocarbon flux from natural marine seeps to the southern California Bight[J]. Journal of Geophycical Research, 2000, 105: 11509-11522. [10]