冬季北黄海溶解态CH4和N2O的浓度分布及海-气交换通量

臧昆鹏, 霍城, 郑楠, 徐雪梅. 冬季北黄海溶解态CH4和N2O的浓度分布及海-气交换通量[J]. 环境化学, 2018, 37(5): 959-967. doi: 10.7524/j.issn.0254-6108.2017111704
引用本文: 臧昆鹏, 霍城, 郑楠, 徐雪梅. 冬季北黄海溶解态CH4和N2O的浓度分布及海-气交换通量[J]. 环境化学, 2018, 37(5): 959-967. doi: 10.7524/j.issn.0254-6108.2017111704
ZANG Kunpeng, HUO Cheng, ZHENG Nan, XU Xuemei. Distributions and fluxes of dissolved CH4 and N2O in the North Yellow Sea in winter[J]. Environmental Chemistry, 2018, 37(5): 959-967. doi: 10.7524/j.issn.0254-6108.2017111704
Citation: ZANG Kunpeng, HUO Cheng, ZHENG Nan, XU Xuemei. Distributions and fluxes of dissolved CH4 and N2O in the North Yellow Sea in winter[J]. Environmental Chemistry, 2018, 37(5): 959-967. doi: 10.7524/j.issn.0254-6108.2017111704

冬季北黄海溶解态CH4和N2O的浓度分布及海-气交换通量

  • 基金项目:

    国家自然科学基金(41606123),国家海洋局海洋-大气化学与全球变化重点实验室基金(GCMAC1506)和国家海洋局近岸海域生态环境重点实验室基金(201610)资助.

Distributions and fluxes of dissolved CH4 and N2O in the North Yellow Sea in winter

  • Fund Project: Supported by the National Science Foundation of China (41606123), Key Laboratory of Global Change and Marine-Atmospheric Chemistry, SOA (GCMAC 1506) and Key Laboratory for Ecological Environmental in Coastal Areas, SOA (201610).
  • 摘要: 2014年1月开展了北黄海表层海水中溶解态甲烷(CH4)和氧化亚氮(N2O)浓度及海水温盐等参数的观测研究.结果显示,冬季北黄海表层海水溶解态CH4和N2O的浓度范围分别为4.3—7.3 nmol·L-1和12.8—14.9 nmol·L-1,饱和度范围分别为150%—255%和128%—149%,是大气CH4和N2O的源.通过针对性开展温盐数据校正,区域和全球尺度大气CH4和N2O摩尔分数参考值的对比计算等关键过程的研究,优化提高了溶解态CH4和N2O饱和度及海-气交换通量计算方法和结果的准确度,得出1月份海-气CH4和N2O交换通量分别为6.3±5.1 μmol·m-2·d-1 和9.4±8.0 μmol·m-2·d-1 (W2014).并结合文献报道的春、夏、秋季节观测结果,将北黄海N2O年释放量修订为1.02×10-2 Tg.
  • 加载中
  • [1] 王明星,张仁健,郑循华. 温室气体的源与汇[J]. 气候与环境研究,2000,5(1):75-79.

    WANG M X, ZHANG R J, ZHENG X H. Sources and sinks of greenhouse gases[J]. Cliamate and Environmental Research. 2000, 5(1): 75-79 (in Chinese).

    [2] BOUSQUET P, RINGEVAL B, PISON I, et al. Source attribution of the changes in atmospheric methane for 2006-2008[J]. Atmospheric Chemistry Physics, 2011, 11: 3689-3700.
    [3] LAW C S, BREVIERE E, LEEUW G, et al. Evolving research directions in surface ocean-lower atmosphere (SOLAS) science[J]. Environmental Chemistry, 2013, 10: 1-16.
    [4] BATES T S, KELLY K C, JOHNSON J E, et al. A revaluation of the open ocean source of methane to the atmosphere[J]. Journal of Geophysical Research, 1996, 101: 6953-6961.
    [5] NEVISION C D, WEISS R F, ERICKSON D J, et al. Global oceanic emissions of nitrous oxide[J]. Journal of Geophysical Research, 1995, 100(C8): 15809-15820.
    [6] BANGE H W. New directions: The importance of the oceanic nitrous oxide emissions[J]. Atmospheric Environmental, 2006, 40(1): 198-199.
    [7] BANGE H W, DAHLKE S, RAMECH R, et al. Seasonal study of methane and nitrous in the coastal waters of the southern Baltic Sea[J]. Estuarine, Coastal and Shelf Science, 1998, 47: 807-817.
    [8] LAL S, PATRA P K. Variabilities in the fluxes and annual emissions of nitrous oxide from the Arabian Sea[J]. Global Biogeochemical Cycles, 1998, 12(2): 321-327.
    [9] CLARK J F, WASHBURN L, HORNAFIUS J S, et al. Dissolved hydrocarbon flux from natural marine seeps to the southern California Bight[J]. Journal of Geophycical Research, 2000, 105: 11509-11522.
    [10]