环境中微(纳米)塑料的来源及毒理学研究进展
Research progress on the sources and toxicology of micro (nano) plastics in environment
-
摘要: 微(纳米)塑料是环境中分布广泛的微小颗粒污染物,不同环境介质中微(纳米)塑料的污染状况及其对生物体的毒害效应受到越来越多研究者的关注.本文系统的综述了环境中微(纳米)塑料的来源和微(纳米)塑料对海洋生物的毒性效应,从转运吸收和毒性评价两个方面重点论述了微(纳米)塑料对人体健康潜在的影响,并介绍了由微(纳米)塑料带来的典型污染物毒性效应.研究结果表明,陆地环境中微纳米塑料的来源主要包括污泥的使用、农业上使用的塑料制品、被微纳米塑料污染的灌溉水以及大气沉降,海洋环境中微纳米塑料的来源主要包括陆源的输入、滨海旅游业、船舶运输业、海上养殖捕捞业以及大气沉降;微(纳米)塑料可被很多海洋生物摄取、并在生物体中积累,且可通过食物链层层富集到更高等的生物体中,从而对生物体正常的新陈代谢及繁殖造成影响;微(纳米)塑料的对人体的毒性,与其表面性质、尺寸大小息息相关,通常情况下,尺寸较小的纳米塑料颗粒更容易进入并积累到细胞和组织,而表面带正面的纳米塑料颗粒对细胞生理活动有较为明显的影响;微(纳米)塑料添加剂及表面吸附的污染物在生物体内的释放,对生物体造成的伤害远远超过微(纳米)塑料本身的影响.本研究结果将为系统地和进一步地开展微(纳米)塑料的风险评估及全面深入地研究其毒理学效应提供支持.Abstract: Micro- and nanoplastics are plastic particles which are widely distributed in the environment. The pollution status and toxicity of micro- and nanoplastics in various environment matrices have attracted increcesing attention in recent years. In this review, we systematically assess the current literature on the sources and occurrences of micro- and nanoplastics in the environment and their potential impacts on marine organisms. We also discussed the potential human health effect of micro- and nanoplastics by uptake kinetics and toxicity assessment, and the toxic effects of the typical pollutants caused by micro- and nanoplastics. The results show that the sources of micro (nano) plastics in the terrestrial environment are mainly sewage sludge application, residues of plastic products used in agriculture, irrigation water contaminated by microplastics and/or aerial deposition. The micro (nano) plastics enter marine environment mainly by land input, seaside tourism, navigation shipping, marine farming and/or aerial deposition. In the marine environment, micro- and nanoplastics can be transported and accumulated through an aquatic food chain from lower trophic level to higher ones, and disturb the metabolism and propagation of the organisms. The toxicity of micro- and nanoplastics is dependent on the size and functional groups on the surface of plastic particles. In general, nanoplastics with smaller size might more easily penetrate and aggregate in cells and tissues and positively charged nanoplastics pose distinct effects on the physiological activity of the cells. Besides, the release of organic pollutants adsorbed on the plastic particles pose more serious toxic effects than the plastics themselves. We hope this review can provide effective support for systematic risk assessment and toxicology of micro- and nanoplastics in future research.
-
Key words:
- micro (nano) plastic /
- marine organism /
- human /
- toxicity assessment /
- combined effects
-
-
[1] COZAR A, ECHEVARRIA F, GONZALEZ-GORDILLO J I, et al. Plastic debris in the open ocean[J]. Proceedings of the National Academy of Sciences, 2014, 111(28):10239-10244. [2] United nations environment programme[R]. Emerging Issues in our Global Environment, 2012. [3] IMHOF H K, IVLEVA N P, SCHMID J, et al. Contamination of beach sediments of a subalpine lake with microplastic particles[J]. Current Biology, 2013, 23(19):867-868. [4] ERIKSSON C, BURTON H. Origins and biological accumulation of small plastic particles in fur seals from macquarie island[J]. Ambio, 2003, 32(6):380-384. [5] FREE C M, JENSEN O P, MASON S A, et al. High-levels of microplastic pollution in a large, remote, mountain lake[J]. Marine Pollution Bulletin, 2014, 85(1):156-163. [6] BARNES D K, GALGANI F, THOMPSON R C, et al. Accumulation and fragmentation of plastic debris in global environments[J]. Biological Sciences, 2009, 364(1526):1985-1998. [7] BARNES D K, WALTERS A, GONCALVES L. Macroplastics at sea around antarctica[J]. Marine Environmental Research, 2010, 70(2):250-252. [8] KLAINE S J, KOELMANS A A, HORNE N, et al. Paradigms to assess the environmental impact of manufactured nanomaterials[J]. Environmental Toxicology and Chemistry, 2012, 31(1):3-14. [9] JAMBECK J R, GEYER R, WILCOX C, et al. Plastic waste inputs from land into the ocean[J]. Science, 2015, 347(6223):768-771. [10] YANG D, SHI H, LI L, et al. Microplastic pollution in table salts from china[J]. Environmental Science & Technology, 2015, 49(22):13622-13627. [11] ESPERANZA H L, HENNIE G, HARM G, et al. Microplastics in the terrestrial ecosystem:Implications for lumbricus terrestris (Oligochaeta, Lumbricidae)[J]. Environmental Science & Technology, 2016, 50(5):2685-2691. [12] RODRIGUEZ-SEIJO A, LOURENCO J, ROCHA-SANTOS, et al. Histopathological and molecular effects of microplastics in Eisenia andrei Bouche'[J]. Environmental Pollution, 2016, 220:495-503. [13] STEINMETZ Z, WOLLMANN C, SCHAEFER M, et al. Plastic mulching in agriculture Trading short-term agronomic benefits for long-term soil degradation?[J]. Science of the Total Environment, 2016, 550:690-705. [14] FENDALL L S, SEWELL M A. Contributing to marine pollution by washing your face:Microplastics in facial cleansers[J]. Marine Pollution Bulletin, 2009, 58(8):1225-1228. [15] ERIKSEN M, MASON S, WILSON S, et al. Microplastic pollution in the surface waters of the laurentian great lakes[J]. Marine Pollution Bulletin, 2013, 77(1-2):177-182. [16] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea:Where is all the plastic?[J]. Science, 2004, 304(5672):836-838. [17] ZUBRIS K A V, RICHARDS B K. Synthetic fibers as an indicator of land application of sludge[J]. Environmental Pollution, 2005, 138(2):201-211. [18] RAMOS L, BERENSTEIN G, HUGHES E A, et al. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina[J]. Science of the Total Environment, 2015, 523:74-81. [19] DRIS R, GASPERI J, SAAD M, et al. Synthetic fibers in atmospheric fallout:A source of microplastics in the environment?[J]. Marine Pollution Bulletin. 2016, 104(1-2):290-293. [20] BROWNE M A, CRUMP P, NIVEN S J, et al. Accumulation of microplastic on shorelines woldwide:Sources and sinks[J]. Environmental Science & Technology, 2011, 45(21):9175-9179. [21] COLE M, LINDEQUE P, HALSBAND C, et al. Microplastics as contaminants in the marine environment:A review[J]. Marine Pollution Bulletin, 2011, 62(16):2588-2597. [22] 孙承君, 蒋凤华, 李景喜, 等. 海洋中微塑料的来源、分布及生态环境影响研究进展[J]. 海洋科学进展, 2016, 34(4):449-461. SUN C J, JIANG F H, LI J X, et al. The research progress in source, distribution, ecological and environmental effects of marine microplastics[J]. Advances in Marine Science, 2016, 34(4):449-461(in Chinese).
[23] 章海波, 周倩, 周阳, 等. 重视海岸及海洋微塑料污染加强防治科技监管研究工作[J]. 中国科学院院刊, 2016, 31(10):1182-1189. ZHANG H B, ZHOU Q, ZHOU Y, et al. Raising concern about microplastic pollution in coastal and marine environment and strengthening scientific researches on pollution prevention and management[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10):1182-1189(in Chinese).
[24] VANCE M E, KUIKEN T, VEJERANO E P, et al. Nanotechnology in the real world:Redeveloping the nanomaterial consumer products inventory[J]. Beilstein Journal of Nanotechnology, 2015, 6:1769-1780. [25] HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments:Evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586:127-141. [26] UNEP. Marine litter:An analytical review[R]. United Nations Environment Programme, 2005. [27] LAMBERT S, SINCLAIR C, BOXALL A. Occurrence, degradation, and effect of polymer-based materials in the environment[M]. Springer International Publishing, 2014:1-53. [28] IOVINO R, ZULLO R, RAO M A, et al. Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions[J]. Polymer Degradation and Stability, 2008, 93(1):147-157. [29] LUCAS N, BIENAIME C, BELLOY C, et al. Polymer biodegradation:Mechanisms and estimation techniques[J]. Chemosphere, 2008, 73(4):429-442. [30] ARTHAM T, DOBLE M. Biodegradation of aliphatic and aromatic polycarbonates[J]. Macromolecular Bioscience, 2008, 8(1):14-24. [31] IVAR DO SUL J A, COSTA M F. The present and future of microplastic pollution in the marine environment[J]. Environmental Pollution, 2014, 185(4):352-364. [32] VON MOOS N, BURKHARDT-HOLM P, KÖHLER A. Uptake and effects of microplastics on cells and tissue of the blue musselmytilus edulis l. After an experimental exposure[J]. Environmental Science & Technology, 2012, 46(20):11327-11335. [33] RⅡSGÅRD H U. Efficiency of particle retention and filtration rate in 6 species of northeast american bivalves[J]. Marine Ecology Progress Series, 1988, 45(3):217-223. [34] BROWNE M A, DISSANAYAKE A, GALLOWAY T S, et al. Ingested microscopic plastic translocates to the circulatory system of the mussel, mytilus edulis (L.)[J]. Environmental Science & Technology, 2008, 42(13):5026-5031. [35] VAN CAUWENBERGHE L, JANSSEN C R. Microplastics in bivalves cultured for human consumption[J]. Environmental Pollution, 2014, 193:65-70. [36] EVAN WARD J, SHUMWAY S E. Separating the grain from the chaff:Particle selection in suspension- and deposit-feeding bivalves[J]. Journal of Experimental Marine Biology and Ecology, 2004, 300(1-2):83-130. [37] BRILLANT B, MACDONALD B. Postingestive selection in the sea scallop (placopecten magellanicus) on the basis of chemical properties of particles[J]. Marine Biology, 2002, 141(3):457-465. [38] JEONG C B, KANG H M, LEE M C, et al. Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana[J]. Scientific Reports, 2017, 7:41323. [39] COLE M, LINDEQUE P K, FILEMAN E, et al. Microplastics alter the properties and sinking Rates of zooplankton faecal pellets[J]. Environmental Science & Technology, 2016, 50(6):3239-3246. [40] JEONG C B, WON E J, KANG H M, et al. Microplastic size-dependent toxicity, oxidative stress induction, and P-JNK and P-P38 activation in the monogonont rotifer (Brachionus koreanus)[J]. Environmental Science & Technology, 2016, 50(16):8849-8857. [41] KETTNER M T, ROJAS-JIMENEZ K, OBERBECKMANN S, et al. Microplastics alter composition of fungal communities in aquatic ecosystems[J]. Environmental Microbiology, 2017,19(11),4447-4459. [42] SUSSARELLU R, SUQUET M, THOMAS Y, et al. Oyster reproduction is affected by exposure to polystyrene microplastics[J]. Proceedings of the National Academy of Sciences, 2016, 113(9):2430-2435. [43] CHEN Q Q, GUNDLACH M, YANG S Y, et al. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity[J]. The Science of the total Environment, 2017, 584:1022-1031. [44] LONNSTEDT O M, EKLOV P. Environmentally relevant concentrations of microplastic particles influence larval fish ecology[J]. Science, 2016, 352(6290):1213-1216. [45] MIZRAJI R, AHRENDT C, PEREZ-VENEGAS D, et al. Is the feeding type related with the content of microplastics in intertidal fish gut?[J]. Marine Pollution Bulletin, 2017, 116(1-2):498-500. [46] FARRELL P, NELSON K. Trophic level transfer of microplastic:Mytilus edulis (L.) to Carcinus maenas (L.)[J]. Environmental Pollution, 2013, 177:1-3. [47] WATTS A J R, LEWIS C, GOODHEAD R M, et al. Uptake and retention of microplastics by the shore crab Carcinus maenas[J]. Environmental Science & Technology, 2014, 48(15):8823-8830. [48] SETALA O, FLEMING-LEHTINEN V, LEHTINIEMI M. Ingestion and transfer of microplastics in the planktonic food web[J]. Environmental Pollution, 2014, 185:77-83. [49] LUSHER A L, MCHUGH M, THOMPSON R C. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel[J]. Marine Pollution Bulletin, 2013, 67(1-2):94-99. [50] BHATTACHARYA P, LIN S J, TURNER J P, et al. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis[J]. The Journal of Physical Chemistry C, 2010, 114(39):16556-16561. [51] DELLA TORRE C, BERGAMI E, SALVATI A, et al. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos paracentrotus lividus[J]. Environmental Science & Technology, 2014, 48(20):12302-12311. [52] WARD J E, KACH D J. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves[J]. Marine Environmental Research, 2009, 68(3):137-142. [53] WEGNER A, BESSELING E, FOEKEMA E M, et al. Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.)[J]. Environmental Toxicology and Chemistry, 2012, 33(11):2490-2497. [54] CEDERVALL T, HANSSON L A, LARD M, et al. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish[J]. PloS one, 2012, 7(2):e32254. [55] HUSSAIN N, JAITLEY V, FLORENCE A T. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics[J]. Advanced Drug Delivery Reviews, 2001, 50(1-2):107-142. [56] VOLKHEIMER G. Hematogenous dissemination of ingested polyvinyl-chloride particles[J]. Annals of the New York Academy of Sciences, 1975, 246(1):164-171. [57] COLLARD F, GILBERT B, COMPERE P, et al. Microplastics in livers of European anchovies (Engraulis encrasicolus L.)[J]. Environmental Pollution, 2017, 229:1000-1005. [58] CARR K E, SMYTH S H, MCCULLOUGH M T, et al. Morphological aspects of interactions between microparticles and mammalian cells:intestinal uptake and onward movement[J]. Progress in Histochemistry and Cytochemistry 2012, 46(4):185-252. [59] SCHMIDT C, LAUTENSCHLAEGER C, COLLNOT E M, et al. Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa:A first in vivo study in human patients[J]. Journal of the Controlled Release Society, 2013, 165(2):139-145. [60] YOO J W, DOSHI N, MITRAGOTRI S. Adaptive micro and nanoparticles:Temporal control over carrier properties to facilitate drug delivery[J]. Advanced Drug Delivery Reviews, 2011, 63:(14-15):1247-56. [61] POWELL J J, THOREE V, PELE L C. Dietary microparticles and their impact on tolerance and immune responsiveness of the gastrointestinal tract[J]. The British Journal of Nutrition, 2007, 98(1):59-63. [62] HANDY R D, HENRY T B, SCOWN T M, et al. Manufactured nanoparticles:Their uptake and effects on fish-a mechanistic analysis[J]. Ecotoxicology, 2008, 17(5):396-409. [63] LU Y F, ZHANG Y, DENG Y F, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 2016, 50(7):4054-4060. [64] DENG Y F, ZHANG Y, LEMOS B, et al. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure[J]. Scientific Reports, 2017, 7:46687. [65] PEDA C, CACCAMO L, FOSSI M C, et al. Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics:Preliminary results[J]. Environmental Pollution, 2016, 212:251-256. [66] BOUWMEESTER H, DEKKERS S, NOORDAM M Y, et al. Review of health safety aspects of nanotechnologies in food production[J]. Regulatory Toxicology and Pharmacology, 2009, 53(1):52-62. [67] WALCZAK A P. Development of an integrated in vitro model for the prediction of oral bioavailability of nanoparticles[D]. Wageningen:Wageningen University, 2014. [68] JANI P, HALBERT G W, LANGRIDGE J, et al. Nanoparticle uptake by the rat gastrointestinal mucosa:Quantitation and particle size dependency[J]. Journal of Pharmacy and Pharmacology, 1990, 42(12):821-826. [69] HILLERY A, JANI P, FLORENCE A. Comparative, quantitative study of lymphoid and non-lymphoid uptake of 60 nm polystyrene particles[J]. Journal of Drug Targeting, 1994, 2(2):151-156. [70] KULKARNI S A, FENG S S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery[J]. Pharmaceutical Research, 2013, 30(10):2512-2522. [71] DES RIEUX A, FIEVEZ V, THÉATE I, et al. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by cells[J]. European Journal of Pharmaceutical Sciences, 2007, 30(5):380-391. [72] WALCZAK A P, KRAMER E, HENDRIKSEN P J M, et al. Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexit[J]. Nanotoxicology, 2015, 9(4):453-461. [73] WALCZAK A P, KRAMER E H M, HENDRIKSEN P J M, et al. In vitro gastrointestinal digestion increases the translocation of polystryrene nanoparticles in an in vitro intestinal co-culture model[J]. Nanotoxicology, 2015, 9(7):886-894. [74] LUNDQVIST M, STIGLER J, ELIA G, et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts[J]. Proceedings of the National Academy of Sciences of the United States of American, 2008, 105(38):14265-14270. [75] MAHLER G J, ESCH M B, TAKO E, et al. Oral exposure to polystyrene nanoparticles affects iron absorption[J]. Nature Nanotechnology, 2012, 7(4):264-271. [76] ROSSI G, BARNOUD J, MONTICELLI L. Polystyrene nanoparticles perturb lipid membranes[J]. The Journal of Physical Chemistry Letters, 2014, 5(1):241-246. [77] SALVATI A, ABERG C, DOS SANTOS T, et al. Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules:Toward models of uptake kinetics[J]. Nanomedicine, 2011, 7, (6):818-826. [78] XIA T, KOVOCHICH M, LIONG M, et al. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways[J]. ACS Nano, 2008, 2(1):85-96. [79] SHOSAKU K. Distribution of nanoparticles in the see-through medaka (oryzias latipes)[J]. Environmental Health Perspectives, 2006, 114(11):1697-1702. [80] FORTE M, IACHETTA G, TUSSELLINO M, et al. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells[J]. Toxicology in vitro:An international journal published in association with BIBRA, 2016, 31:126-136. [81] LIU Y X, LI W, LAO F, et al. Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes[J]. Biomaterials, 2011, 32(32):8291-8303. [82] BHATTACHARJEE S, ERSHOV D, ISLAM M A, et al. Role of membrane disturbance and oxidative stress in the mode of action underlying the toxicity of differently charged polystyrene nanoparticles[J]. Rsc Advance, 2014, 4(37):19321-19330. [83] MATO Y, ISOBE T, TAKADA H, et al. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment[J]. Environmental Science & Technology, 2001, 35(2):318-324. [84] GUO X Y, WANG X L, ZHOU X Z, et al. Sorption of four hydrophobic organic compounds by three chemically distinct polymers:Role of chemical and physical composition[J]. Environmental Science & Technology, 2012, 46(13):7252-7259. [85] GOUIN T, ROCHE N, LOHMANN R, et al. A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic[J]. Environmental Science & Technology, 2011, 45(4):1466-1472. [86] KOELMANS A A, BESSELING E, WEGNER A, et al. Plastic as a carrier of POPs to aquatic organisms:A model analysis[J]. Environmental Science & Technology, 2013, 47(14):7812-7820. [87] RIETJENS I M C M, LOUISSE J, PUNT A.Tutorial on physiologically based kinetic modeling in molecular nutrition and food research[J]. Molecular Nutrition Food Research, 2011, 55(6):941-956. [88] FOSSI M C, COPPOLA D, BAINI M, et al. Large filter feeding marine organisms as indicators of microplastic in the pelagic environment:the case studies of the Mediterranean basking shark (Cetorhinus maximus) and fin whale (Balaenoptera physalus)[J]. Marine Environmental Research, 2014, 100:17-24. [89] BROWNE M A, NIVEN S J, GALLOWAY T S, et al. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity[J]. Current Biology, 2013, 23(23):2388-2392. [90] BESSELING E, WEGNER A, FOEKEMA E M, et al. Effects of microplastic on fitness and pcb bioaccumulation by the Lugworm arenicola marina (L.)[J]. Environmental Science & Technology, 2013, 47(1):593-600. [91] MICHAEL O G, ELLEN H, ROBERT C H. Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and penta-BDE-amended Soils[J]. Environmental Science & Technology, 2013, 47(23):13831-13839. [92] DEVRIESE L I, DE WITTE B, VETHAAK A D, et al. Bioaccumulation of PCBs from microplastics in Norway lobster (Nephrops norvegicus):An experimental study[J]. Chemosphere, 2017, 186:10-16. [93] CHUA E M, SHIMETA J, NUGEGODA D, et al. Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, Allorchestes Compressa[J]. Environmental Science & Technology, 2013, 48(14):8127-8134. [94] MA Y, HUANG A, CAO S, et al. Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water[J]. Environmental Pollution, 2016, 219:166-173. [95] TEUTEN E L, SAQUING J M, KNAPPE D R, et al. Transport and release of chemicals from plastics to the environment and to wildlife[J]. Philosophical transactions of the Royal Society of London, Series B, Biological sciences, 2009, 364(1526):2027-2045. [96] LITHNER D, DAMBERG J, DAVE G, et al. Leachates from plastic consumer products-Screening for toxicity with Daphnia magna[J]. Chemosphere, 2009, 74(9):1195-1200. [97] BEJGARN S, MACLEOD M, BOGDAL C, et al. Toxicity of leachate from weathering plastics:An exploratory screening study with Nitocra spinipes[J]. Chemosphere, 2015, 132:114-119. [98] LI H X, GETZINGER G J, FERGUSON P L, et al. Effects of toxic leachate from commercial plastics on larval survival and settlement of the barnacle amphibalanus amphitrite[J]. Environmental Science & Technology, 2016, 50(2):924-931. [99] GANDARA E S P P, NOBRE C R, RESAFFE P, et al. Leachate from microplastics impairs larval development in brown mussels[J]. Water Research, 2016, 106:364-370. [100] HAMLIN H J, MARCIANO K, DOWNS C A. Migration of nonylphenol from food-grade plastic is toxic to the coral reef fish species Pseudochromis fridmani[J]. Chemosphere, 2015, 139:223-228. [101] LITHNER D, NORDENSVAN I, DAVE G. Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile-butadiene-styrene, and epoxy to Daphnia magna[J]. Environmental Science and Pollution Research International, 2012, 19(5):1763-1772. -

计量
- 文章访问数: 4908
- HTML全文浏览数: 4703
- PDF下载数: 689
- 施引文献: 0