酮洛芬在臭氧作用下的降解机制、产物及毒性

林晓璇, 孔青青, 曾泳钦, 陆一达, 刘国光, 吕文英. 酮洛芬在臭氧作用下的降解机制、产物及毒性[J]. 环境化学, 2018, 37(5): 1063-1070. doi: 10.7524/j.issn.0254-6108.2017071101
引用本文: 林晓璇, 孔青青, 曾泳钦, 陆一达, 刘国光, 吕文英. 酮洛芬在臭氧作用下的降解机制、产物及毒性[J]. 环境化学, 2018, 37(5): 1063-1070. doi: 10.7524/j.issn.0254-6108.2017071101
LIN Xiaoxuan, KONG Qingqing, ZENG Yongqin, LU Yida, LIU Guoguang, LYV Wenying. Study on mechanism, intermediates and toxicity of ketoprofen degradation by ozone[J]. Environmental Chemistry, 2018, 37(5): 1063-1070. doi: 10.7524/j.issn.0254-6108.2017071101
Citation: LIN Xiaoxuan, KONG Qingqing, ZENG Yongqin, LU Yida, LIU Guoguang, LYV Wenying. Study on mechanism, intermediates and toxicity of ketoprofen degradation by ozone[J]. Environmental Chemistry, 2018, 37(5): 1063-1070. doi: 10.7524/j.issn.0254-6108.2017071101

酮洛芬在臭氧作用下的降解机制、产物及毒性

  • 基金项目:

    国家自然科学基金(21377031)资助.

Study on mechanism, intermediates and toxicity of ketoprofen degradation by ozone

  • Fund Project: Supported by the National Natural Science Foundation of China(21377031).
  • 摘要: 利用臭氧(O3)氧化降解酮洛芬(KET),采用淬灭实验探究了实验过程中KET的降解机理,鉴定了降解中间产物,推测了其降解路径,并且对KET降解过程中的急性毒性进行了评价.结果表明,臭氧能有效降解KET,其降解符合一级动力学.降解过程中臭氧和羟基自由基(·OH)共同作用于KET.KET降解过程中生成了21种主要产物,其中包括3-乙基二苯甲酮、3-(1-过氧化氢乙基)-二苯甲酮、3-(1-乙酰基)-二苯甲酮等产物,降解路径包括羟基化、脱羧基、脱甲基、侧链氧化、酮基断裂等.明亮发光杆菌急性毒性实验表明KET降解过程中生成了较母体更高风险的中间产物.
  • 加载中
  • [1] KLEFAH AK M, JON M M, LEIF A E. Mechanism of photoinduced decomposition of ketoprofen. Journal of Medicina [J]. Chemistry, 2007, 50(8):1735-1743.
    [2] DAUGHTON CG. Chapter 1 Pharmaceuticals in the environment: Sources and their management [M]. Elsevier Science & Technology, 2007, 50:1-58.
    [3] MACKAY D, BARNTHOUSE L. Integrated risk assessment of household chemicals and consumer products: Addressing concerns about triclosan [J]. Integrated Environmental Assessment & Management, 2010, 6(3):390-392.
    [4] SANTOS JL, APARICIO I, ALONSO E. Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain) [J]. Environment International, 2007, 33(4):596-601.
    [5] KASPRZYK-HORDERN B, DINSDALE RM, GUWY AJ. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK [J]. Water Research, 2008, 42(13):3498-3518.
    [6] CAO J, SHI J, HAN R, et al. Seasonal variations in the occurrence and distribution of estrogens and pharmaceuticals in the Zhangweinanyun River System [J]. Chinese Science Bulletin, 2010, 55(27-28):3138-3144.
    [7] CRANE M, WATTS C, BOUCARD T. Chronic aquatic environmental risks from exposure to human pharmaceuticals [J]. Science of the Total Environment, 2006, 367(1):23-41.
    [8] SEIN MM, ZEDDA M, TUERK J, et al. Oxidation of diclofenac with ozone in aqueous solution [J]. Environmental Science & Technology. 2008, 42(17):6656-6662.
    [9] VON GUNTEN U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation [J]. Water Research, 2003, 37(7):1443-1467.
    [10] MIAO H, ZHU X, XU D, et al. Transformation of aminopyrine during ozonation: Characteristics and pathways [J]. Chemical Engineering Journal, 2015, 279:156-165.
    [11] DE WITTE B, DEWULF J, DEMEESTERE K, et al. Ozonation and advanced oxidation by the peroxone process of ciprofloxacin in water [J]. Journal of Hazardous Materials, 2009, 161(2-3):701-708.
    [12] BROSEUS R, VINCENT S, ABOULFADL K, et al. Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment [J]. Water Research, 2009, 43(18):4707-4717.
    [13] GAGO FERRERO P, DEMEESTERE K, DIAZ-CRUZ S, et al. Ozonation and peroxone oxidation of benzophenone-3 in water: Effect of operational parameters and identification of intermediate products [J]. Science of the Total Environment, 2013, 443:209-217.
    [14] 林晓璇, 刘国光, 李若白, 等. 臭氧作用下酮洛芬的降解行为及机理研究[J]. 中国环境科学, 2017, 37(2):598-605.

    LIN X X, LIU G G, LI R B, et al. Study on ketoprofen degradation behavior and mechanism under ozonation [J]. China Environmental Science, 2017, 37(2):598-605 (in Chinese).

    [15] 于丽, 张培龙, 侯甲才, 等. 臭氧降解水中邻苯二甲酸二甲酯的动力学及影响因素 [J]. 环境科学, 2013, 34(6):2210-2217.

    YU L, ZHANG P L, HOU J C, et al. Kinetics and influencing factors of dimethyl phthalate degradation in aqueous solution by ozonation [J]. Environmental Science, 2013, 34(6):2210-2217 (in Chinese).

    [16] 臧兴杰, 童少平, 马淳安. 对苯二甲酸臭氧化降解的动力学及机制研究. 环境科学, 2009, 30(6):1658-1662.

    ZANG X J, TONG S P, MA C A. Kinetic and mechanism of ozonation of terephthalic acid [J]. Environmental Science, 2009, 30(6):1658-1662(in Chinese).

    [17] NING X A, SHEN L Z, SUN J, et al. Degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge by O3/H2O2 treatment [J]. RSC Advances, 2015, 5(48):38021-38029.
    [18] YANG Y, JIANG J, LU X L, et al. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: A novel advanced oxidation process [J]. Environmental Science & Technology, 2015, 49(12):7330-7339.
    [19] GUAN Y H, MA J, LI X C, et al. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/Peroxymonosulfate system [J]. Environmental Science & Technology, 2011, 45(21):9308-9314.
    [20] KASPRZYK-HORDERN B, RACZYK-STANISŁAWIAK U, S'WIETLIK J, et al. Catalytic ozonation of natural organic matter on alumina [J]. Applied Catalysis B Environmental, 2006, 62(3-4):345-358.
    [21] ALVAREZ P M, GARCIA-ARAYA J F, BELTRAN F J, et al. The influence of various factors on aqueous ozone decomposition by granular activated carbons and the development of a mechanistic approach [J]. Carbon, 2006, 44(14):3102-3112.
    [22] GE L K, CHEN J W, ZHANG S Y, et al. Photodegradation of fluoroquinolone antibiotic gatifloxacin in aqueous solutions [J]. Chinese Science Bulletin, 2010, 55(15):1495-1500.
    [23] KUANG JM, HUANG J, WANG B, et al. Ozonation of trimethoprim in aqueous solution: Identification of reaction products and their toxicity [J]. Water Research, 2013, 47(8):2863-2872.
    [24] ILLES E, TAKACS E, DOMBI A, et al. Radiation induced degradation of ketoprofen in dilute aqueous solution [J]. Radiation Physics and Chemistry, 2012, 81(9):1479-1483.
    [25] TAY KS, RAHMAN NA, ABAS MRB. Characterization of atenolol transformation products in ozonation by using rapid resolution high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry [J]. Microchemical Journal, 2011, 99(2):312-326.
    [26] DA SILVA JCC, TEODORO JAR, AFONSO RJDC, et al. Photolysis and photocatalysis of ibuprofen in aqueous medium: Characterization of by-products via liquid chromatography coupled to high-resolution mass spectrometry and assessment of their toxicities against Artemia Salina [J]. Journal of Mass Spectrometry, 2014, 49(2):145-153.
    [27] MARTINEZ C, VILARINO S, FERNANDEZ MI, et al. Mechanism of degradation of ketoprofen by heterogeneous photocatalysis in aqueous solution [J]. Applied Catalysis B: Environmental, 2013, 142-143:633-646.
    [28] ILLES E, SZABO E, TAKACS E, et al. Ketoprofen removal by O3 and O3/UV processes: Kinetics, transformation products and ecotoxicity [J]. Science of the Total Environment, 2014, 472:178-184.
    [29] 苏跃涵, 张利朋, 王枫亮,等. Fe2+/单过氧硫酸氢盐(PMS)体系降解水体中酮洛芬的机制研究[J]. 环境化学, 2016, 35(9):1753-1761.

    SU Y H, ZHANG L P, WANG F L et al. Degradation mechanism of ketoprofen by Fe2+/potassium peroxymonosulfate (PMS) oxidation process in aqueous [J]. Environmental Chemistry, 2016, 35(9):1753-1761 (in Chinese).

    [30] NAKAJIMA A, TAHARA M, YOSHIMURA Y, et al. Determination of free radicals generated from light exposed ketoprofen [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 174(2):89-97.
    [31] GONG P, YUAN HX, ZHAI PP, et al. Investigation on the degradation of benzophenone-3 by UV/H2O2 in aqueous solution [J]. Chemical Engineering Journal, 2015, 277:97-103.
    [32] MANASFI T, STORCK V, RAVIER S, et al. Degradation products of benzophenone-3 in chlorinated seawater swimming pools [J]. Environmental Science & Technology, 2015, 49(15):9308-9316.
    [33] 闻瑞梅, 葛伟伟. 用185nm UV降解水中二苯甲酮和孔雀石绿 [J]. 环境科学学报, 2007, 30(4):587-594.

    WEN R M, GE W W. A Study on the degradation path of diphenylketone and malachite green in water by 185 nm UV irradiation[J]. Acta Scientiae Circumstantiae, 2007, 27(4):587-594 (in Chinese).

  • 加载中
计量
  • 文章访问数:  1686
  • HTML全文浏览数:  1648
  • PDF下载数:  351
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-07-11
  • 刊出日期:  2018-05-15
林晓璇, 孔青青, 曾泳钦, 陆一达, 刘国光, 吕文英. 酮洛芬在臭氧作用下的降解机制、产物及毒性[J]. 环境化学, 2018, 37(5): 1063-1070. doi: 10.7524/j.issn.0254-6108.2017071101
引用本文: 林晓璇, 孔青青, 曾泳钦, 陆一达, 刘国光, 吕文英. 酮洛芬在臭氧作用下的降解机制、产物及毒性[J]. 环境化学, 2018, 37(5): 1063-1070. doi: 10.7524/j.issn.0254-6108.2017071101
LIN Xiaoxuan, KONG Qingqing, ZENG Yongqin, LU Yida, LIU Guoguang, LYV Wenying. Study on mechanism, intermediates and toxicity of ketoprofen degradation by ozone[J]. Environmental Chemistry, 2018, 37(5): 1063-1070. doi: 10.7524/j.issn.0254-6108.2017071101
Citation: LIN Xiaoxuan, KONG Qingqing, ZENG Yongqin, LU Yida, LIU Guoguang, LYV Wenying. Study on mechanism, intermediates and toxicity of ketoprofen degradation by ozone[J]. Environmental Chemistry, 2018, 37(5): 1063-1070. doi: 10.7524/j.issn.0254-6108.2017071101

酮洛芬在臭氧作用下的降解机制、产物及毒性

  • 1. 广东工业大学环境科学与工程学院, 广州, 510006
基金项目:

国家自然科学基金(21377031)资助.

摘要: 利用臭氧(O3)氧化降解酮洛芬(KET),采用淬灭实验探究了实验过程中KET的降解机理,鉴定了降解中间产物,推测了其降解路径,并且对KET降解过程中的急性毒性进行了评价.结果表明,臭氧能有效降解KET,其降解符合一级动力学.降解过程中臭氧和羟基自由基(·OH)共同作用于KET.KET降解过程中生成了21种主要产物,其中包括3-乙基二苯甲酮、3-(1-过氧化氢乙基)-二苯甲酮、3-(1-乙酰基)-二苯甲酮等产物,降解路径包括羟基化、脱羧基、脱甲基、侧链氧化、酮基断裂等.明亮发光杆菌急性毒性实验表明KET降解过程中生成了较母体更高风险的中间产物.

English Abstract

参考文献 (33)

返回顶部

目录

/

返回文章
返回