零价铁活化过硫酸钠对偶氮染料4BS的脱色机理

唐玉朝, 尹汉雄, 黄健, 凌琪, 李卫华, 张萌. 零价铁活化过硫酸钠对偶氮染料4BS的脱色机理[J]. 环境化学, 2018, 37(5): 1071-1078. doi: 10.7524/j.issn.0254-6108.2017072103
引用本文: 唐玉朝, 尹汉雄, 黄健, 凌琪, 李卫华, 张萌. 零价铁活化过硫酸钠对偶氮染料4BS的脱色机理[J]. 环境化学, 2018, 37(5): 1071-1078. doi: 10.7524/j.issn.0254-6108.2017072103
TANG Yuchao, YIN Hanxiong, HUANG Jian, LING Qi, LI Weihua, ZHANG Meng. Decoloration mechanism of azo dye 4BS by zero valent iron activated sodium persulfate[J]. Environmental Chemistry, 2018, 37(5): 1071-1078. doi: 10.7524/j.issn.0254-6108.2017072103
Citation: TANG Yuchao, YIN Hanxiong, HUANG Jian, LING Qi, LI Weihua, ZHANG Meng. Decoloration mechanism of azo dye 4BS by zero valent iron activated sodium persulfate[J]. Environmental Chemistry, 2018, 37(5): 1071-1078. doi: 10.7524/j.issn.0254-6108.2017072103

零价铁活化过硫酸钠对偶氮染料4BS的脱色机理

  • 基金项目:

    国家科技重大专项(2014ZX07405-003),安徽省教育厅自然科学重点项目(KJ2015A109),住建部科学技术项目(2016-K4-077)和大学生创新创业项目资助.

Decoloration mechanism of azo dye 4BS by zero valent iron activated sodium persulfate

  • Fund Project: Supported by the National Science and Technology Major Projects (2014ZX07405-003), Natural Science Foundation of Anhui Provincial Education Department(KJ2015A109), Ministry of Housing Science and Technology Project(2016-K4-077) and Innovation and Entrepreneurship Project of College Students.
  • 摘要: 以直接耐酸大红4BS为研究对象,利用零价铁(ZVI)活化过硫酸钠(PDS)对其进行脱色研究,考察了PDS浓度、ZVI浓度、pH、温度等对脱色的影响.结果表明,一定浓度的ZVI与PDS联合使用能促进大红4BS的脱色,在20 min时脱色率达98.79%,远高于使用单一药剂的效率,且反应符合准一级反应动力学方程.低pH有利于反应的进行,随着pH值降低,反应速率逐渐加快,在pH=10.42时,反应90 min仅脱色9.41%,而在pH=3.03时脱色率达95.57%.温度的升高虽然能加快大红4BS的脱色,但是会使PDS的利用率降低,当温度由20 ℃增大到60 ℃时,PDS的利用率降低12%,且温度对大红4BS降解速率的影响符合阿伦尼乌斯模型(R2=0.988),计算的活化能为14.44 kJ·mol-1.分别以叔丁醇与异丙醇为分子探针的自由基清除实验显示:ZVI活化PDS降解大红4BS是以SO4-·为主导的自由基反应过程.
  • 加载中
  • [1] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J].National Bureau of Stan, 1979, 17(3):1027-1284.
    [2] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical view of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution[J]. Journal of Physical Chemical Reference Data,1988,17(2):513-886.
    [3] LUNA J R T, PEREZ R O, POLO M S, et al. Role of HO·and SO4· radicals on the photodegradation of remazol red in aqueous solution[J].Chemical Engineering Journal, 2013, 223:155-163.
    [4] CHEN Y Q, DENG P Y, XIE P C, et al. Heat-activated persulfate oxidation of methyl and ethyl-parabens: Effect, kinetics, and mechanism[J]. Chemosphere, 2016, 11:1-9.
    [5] WU Y L, PRULHO R, BRIGANTE M, et al. Activation of persulfate by Fe(Ⅲ) species: Implications for 4-tert-butylphenol degradation[J]. Journal of Hazardous Materials, 2017, 322:380-386.
    [6] DENG D Y, LIN X T, OU J M, et al. Efficient chemical oxidation of high levels of soil-sorbed phenanthrene by ultrasound induced, thermally activated persulfate[J]. Chemical Engineering Journal, 2015,265: 176-183.
    [7] DAVIDIDOU K, MONTEAGUDO J M, CHATZISYMEON E, et al. Degradation and mineralization of antipyrine by UV-A LED photo-Fenton reaction intensified by ferrioxalate with addition of persulfate[J]. Separation and Purification Technology, 2017, 172:227-235.
    [8] BU L J, SHI Z, ZHOU S Q. Modeling of Fe(Ⅱ)-activated persulfate oxidation using atrazine as a target contaminant[J]. Separation and Purification Technology, 2016,169:59-65.
    [9] 高金龙, 马玉琳, 孟庆来, 等. 二价铁活化过硫酸盐降解土壤中十溴联苯醚[J].环境工程学报, 2016, 10(12): 7339-7343.

    GAO J L, MA Y L, MENG Q L, et al. Degradation of decabromodiphenyl ether in soil by sulfate activated with ferrous ions[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 7339-7343(in Chinese).

    [10] 于辉, 金春姬, 王鹏远, 等. Fe2+与Fe0活化过二硫酸盐降解活性艳蓝KN-R[J]. 环境科学研究, 2015, 28(1):88-95.

    YU H, JIN C J, WANG P Y, et al. Degradation of reactive brilliant blue KN-R by persulfate activated with Fe2+ and Fe0[J]. Research of Environmental Sciences, 2015, 28(1): 88-95(in Chinese).

    [11] VICENTE F, SANTOS A, ROMERO A, et al. Kinetic study of diuron oxidation and mineralization by persulphate: Effects of temperature, oxidant concentration and iron dosage method[J]. Chemical Engineering Journal, 2011, 170(1): 127-135.
    [12] 杨世迎, 马楠, 王静, 等. 零价铁/过二硫酸盐去除水中硝基苯的还原与氧化机理[J]. 环境化学,2013, 32(11): 2127-2133.

    YANG S Y, MA N, WANG J, et al. Reduction and oxidation reaction mechanism of nitrobenzene removal by zero-valent iron and persulfate[J]. Environmental Chemistry, 2013, 32(11):2127-2133(in Chinese).

    [13] DENG J, SHAO Y, GAO N, et al. Zero-valent iron/persulfate(Fe0/PS) oxidation acetaminophen in water[J]. International Journal of Environmental Science and Technology, 2014, 11(4): 881-890.
    [14] VICENTE F, SANTOS A, ROMERO A, et al. Kinetic study of diuron oxidation and mineralization by persulphate: effects of temperature, oxidant concentration and iron dosage method[J]. Chemical Engineering Journal, 2011, 170(1): 127-135.
    [15] HAYON E, TREININ A, WILF J. Electronic spectra,photochemistry,and autoxidation mechanism of the sulfite-bisulfitepyrosulfite systems SO2-,SO3-,SO4-,and SO5- radicals[J]. Journal of the American Chemical Society, 1972, 94(1): 47-57.
    [16] 尹汉雄, 唐玉朝, 黄显怀, 等. 紫外光强化Fe(Ⅱ)-EDTA活化过硫酸盐降解直接耐酸大红4BS[J].环境科学研究,2017,30(7):1105-1111.

    YIN H X, TANG Y C, HUANG X H, et al.Decolorization effect of direct fast scarlet 4BS by Fe(Ⅱ)-EDTA activated peroxodisulfate under ultraviolet light[J]. Reserrch of Environmental Science, 2017, 30(7):1105-1111(in Chinese).

    [17]
    [18] WEI X Y, Gao N Y, Li C J, et al. Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water[J]. Chemical Engineering Journal, 2016,285: 660-670.
    [19] ROBERT E H, CAROL L C. Rate constants for hydrogen abstraction reactions of the sulfate radical,SO4- Alkanes and ethers[J]. International Journal of Chemical Kinetics,1989, 21(8): 611-619.
    [20] ZENG J W, HU L L, TAN X Q, et al. Elimination of methyl mercaptan in ZVI-S2O2-8 system activated with in-situ generated ferrous ions from zero valent iron[J]. Catalysis Today, 2016, 281(3): 520-526.
    [21] SONG S,XU L J, HE Z Q, et al.Photocatalytic degradation of C.I.Direct Red 23 in aqueous solutions under UV irradiation using SrTiO3/CeO2 composite as the catalyst[J].Journal of Hazardous Materials, 2008, 152(3): 1301-1308.
    [22] LIANG C J, WANG Z S, BRUELL C J. Influence of pH on persulfate oxidation of TCE at ambient temperatures[J]. Chemosphere. 2007,66(1): 106-113.
    [23] 廖云燕, 刘国强, 赵力, 等. 利用热活化过硫酸盐技术去除阿特拉津[J]. 环境科学学报, 2014, 34(4):931-937.

    LIAO Y Y, LIU G Q, ZHAO L, et al. Removal of atrazine in heat activated persulfate oxidation process[J]. Acta Scientiae Circumstantiae, 2014, 34(4):931-937(in Chinese).

    [24] 金晓英, 李任超, 陈祖亮. 纳米零价铁活化过硫酸钠降解2,4-二氯苯酚[J]. 环境化学, 2014, 33(5): 812-818.

    JIN X Y, LI R C, CHEN Z L. Degradation of 2,4-dichlorophenol by the interaction of nanoscale zero-valent iron with persulfate[J]. Environmental Chemistry, 2014, 33(5): 812-818(in Chinese).

    [25] SU J, LIN S, CHEN Z, et al. Dechlorination of p-chlorophenol from aqueous solution using bentonite supported Fe/Pd nanoparticles: Synthesis, characterization and kinetics[J]. Desalination, 2011, 280(1):167-173.
    [26] 杨世迎, 郑迪, 常书雅, 等. 基于零价铝的氧化/还原技术在水处理中的应用[J]. 化学进展,2016, 28(5): 754-762.

    YANG S Y, ZHENG D, CHANG S Y, et al. Zero valent aluminum based oxidation/reduction technology applied in water treatment[J]. Progress in Chemistry, 2016, 28(5):754-762(in Chinese).

    [27] LIANG C J, SU H. Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J]. Industrial & Engineering Chemistry Research, 2009, 48(11): 5558-5562.
    [28] 邓靖, 冯善方, 马晓雁, 等. 热活化过硫酸盐降解水中卡马西平[J]. 化工学报, 2015, 66(1):410-418.

    DENG J, FENG S F, MA X Y, et al. Degradation of carbamazepine in water by thermally activated persulfate[J]. Ciesc Journal, 2015, 66(1):410-418(in Chinese).

    [29] 林玉满, 朱妍, 陈祖亮. 纳米Ni/Fe双金属去除水溶液中直接耐酸大红4BS的研究[J]. 安全与环境学报,2011, 11(1):51-55.

    LIN Y M, ZHU Y, CHEN Z L. Removal of direct fast scarlet 4BS from aqueous solution with nanoscale Ni/Fe bimetallic particles[J]. Journal of Safety & Environment, 2011, 11(1):51-55(in Chinese).

    [30] 陈郁, 全 燮. 零价铁处理污水的机理及应用[J]. 环境科学研究, 2000, 13(5): 24-26.

    CHEN Y, QUAN X. The mechanism of the treatment of wastewater using zero-valent iron and its application[J]. Research of Environmentalences, 2000, 13(5):24-26(in Chinese).

  • 加载中
计量
  • 文章访问数:  1316
  • HTML全文浏览数:  1266
  • PDF下载数:  430
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-07-21
  • 刊出日期:  2018-05-15
唐玉朝, 尹汉雄, 黄健, 凌琪, 李卫华, 张萌. 零价铁活化过硫酸钠对偶氮染料4BS的脱色机理[J]. 环境化学, 2018, 37(5): 1071-1078. doi: 10.7524/j.issn.0254-6108.2017072103
引用本文: 唐玉朝, 尹汉雄, 黄健, 凌琪, 李卫华, 张萌. 零价铁活化过硫酸钠对偶氮染料4BS的脱色机理[J]. 环境化学, 2018, 37(5): 1071-1078. doi: 10.7524/j.issn.0254-6108.2017072103
TANG Yuchao, YIN Hanxiong, HUANG Jian, LING Qi, LI Weihua, ZHANG Meng. Decoloration mechanism of azo dye 4BS by zero valent iron activated sodium persulfate[J]. Environmental Chemistry, 2018, 37(5): 1071-1078. doi: 10.7524/j.issn.0254-6108.2017072103
Citation: TANG Yuchao, YIN Hanxiong, HUANG Jian, LING Qi, LI Weihua, ZHANG Meng. Decoloration mechanism of azo dye 4BS by zero valent iron activated sodium persulfate[J]. Environmental Chemistry, 2018, 37(5): 1071-1078. doi: 10.7524/j.issn.0254-6108.2017072103

零价铁活化过硫酸钠对偶氮染料4BS的脱色机理

  • 1. 安徽建筑大学, 水污染控制与废水资源化安徽省重点实验室, 合肥, 230601
基金项目:

国家科技重大专项(2014ZX07405-003),安徽省教育厅自然科学重点项目(KJ2015A109),住建部科学技术项目(2016-K4-077)和大学生创新创业项目资助.

摘要: 以直接耐酸大红4BS为研究对象,利用零价铁(ZVI)活化过硫酸钠(PDS)对其进行脱色研究,考察了PDS浓度、ZVI浓度、pH、温度等对脱色的影响.结果表明,一定浓度的ZVI与PDS联合使用能促进大红4BS的脱色,在20 min时脱色率达98.79%,远高于使用单一药剂的效率,且反应符合准一级反应动力学方程.低pH有利于反应的进行,随着pH值降低,反应速率逐渐加快,在pH=10.42时,反应90 min仅脱色9.41%,而在pH=3.03时脱色率达95.57%.温度的升高虽然能加快大红4BS的脱色,但是会使PDS的利用率降低,当温度由20 ℃增大到60 ℃时,PDS的利用率降低12%,且温度对大红4BS降解速率的影响符合阿伦尼乌斯模型(R2=0.988),计算的活化能为14.44 kJ·mol-1.分别以叔丁醇与异丙醇为分子探针的自由基清除实验显示:ZVI活化PDS降解大红4BS是以SO4-·为主导的自由基反应过程.

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回