硬脂酸和油酸钝化黄铜矿表面的电化学研究

周树林, 舒小华, 丰顺, 刘杰, 朱园芳. 硬脂酸和油酸钝化黄铜矿表面的电化学研究[J]. 环境化学, 2018, 37(5): 1079-1088. doi: 10.7524/j.issn.0254-6108.2017081303
引用本文: 周树林, 舒小华, 丰顺, 刘杰, 朱园芳. 硬脂酸和油酸钝化黄铜矿表面的电化学研究[J]. 环境化学, 2018, 37(5): 1079-1088. doi: 10.7524/j.issn.0254-6108.2017081303
ZHOU Shulin, SHU Xiaohua, FENG Shun, LIU Jie, ZHU Yuanfang. Electrochemical study on the surface passivation of chalcopyrite by stearic acid and oleic acid[J]. Environmental Chemistry, 2018, 37(5): 1079-1088. doi: 10.7524/j.issn.0254-6108.2017081303
Citation: ZHOU Shulin, SHU Xiaohua, FENG Shun, LIU Jie, ZHU Yuanfang. Electrochemical study on the surface passivation of chalcopyrite by stearic acid and oleic acid[J]. Environmental Chemistry, 2018, 37(5): 1079-1088. doi: 10.7524/j.issn.0254-6108.2017081303

硬脂酸和油酸钝化黄铜矿表面的电化学研究

  • 基金项目:

    国家自然科学基金(41471270,51569008)和广西科学研究与技术开发计划项目(桂科重14124001-4)资助.

Electrochemical study on the surface passivation of chalcopyrite by stearic acid and oleic acid

  • Fund Project: Supported by the National Natural Science Foundation of China (41471270,51569008) and Science and Technology Development Plan of Guangxi Province, China(Guikezhong 14124001-4).
  • 摘要: 以黄铜矿为研究对象,利用开路电位(OCP)、循环伏安(CV) 法,Tafel极化曲线和交流阻抗(EIS)等电化学方法,对硬脂酸和油酸对黄铜矿表面氧化的钝化过程和钝化机理进行了研究.研究结果表明,硬脂酸和油酸的加入有效抑制了黄铜矿的氧化,其抑制效率分别为58.1%和78.2%.电化学测量结果显示钝化剂的加入并没有改变黄铜矿的表面氧化还原的机理,而是通过在黄铜矿表面形成钝化膜,降低了体系的开路电位从而抑制了黄铜矿表面氧化.
  • 加载中
  • [1] RIMSTIDT J D. Rates of reaction of galena, sphalerite, chalcopyrite, and arsenopyrite with Fe(Ⅲ) in acidic solutions[C]. ACS Symposium Series. 1993:2-13.
    [2] ATA A, SONER K. Acid mine drainage(AMD):Causes, treatment and case studies [J]. Journal of Cleaner Production, 2006, 14(12-13):1139-1146.
    [3] 周永章, 付善明, 张澄博,等. 华南地区含硫化物金属矿山生态环境中的重金属元素地球化学迁移模型——重点对粤北大宝山铁铜多金属矿山的观察[J]. 地学前缘, 2008, 15(5):248-255.

    ZHOU Y Z, FU S M, ZHANG C B, et al. Geochemical migration model of heavy metal elements in sulfide metal mine in South China—Focus on observation of Dabaoshan iron-copper polymetallic mine in northern Guangdong [J]. Earth Science Frontier, 2008, 15 (5): 248-255(in Chinese).

    [4] 周永章, 宋书巧, 杨志军, 等.河流沿岸土壤对上游矿山及矿山开发的环境地球化学响应—以广西刁江流域为例[J].地质通报, 2005, 24(10):945-951.

    ZHOU Y Z, SONG S Q, YANG Z J, et al. Environmental geochemical response of upstream rivers and mines to the development of rivers-Taking Diaojiang River Basin in Guangxi as an example [J]. Geological Bulletin, 2005, 24(10):945-951 (in Chinese).

    [5] 周永章, 宋书巧, 张澄博, 等.河流对矿山及矿山开发的水环境地球化学响应——以广西刁江水系为例[J].地质通报, 2005, 24(z1):940-944.

    ZHOU Y Z, SONG S Q, ZHANG C B, et al.Effects of rivers on water environment geochemistry of mines and mines-Taking Diaojiang water system in Guangxi as an example [J]. Geological Bulletin, 2005, 24(z1):940-944 (in Chinese).

    [6] 林初夏, 龙新宪, 童晓立, 等.广东大宝山矿区生态环境退化现状及治理途径探讨[J].生态科学, 2003, 22(3):205-208.

    LIN C X, LONG X X, TONG X L, et al.Discussion on the present situation of ecological environment degradation and its treatment in Dabaoshan mining area of Guangdong [J]. Ecological Science, 2003, 22(3):205-208 (in Chinese).

    [7] 蔡美芳,党志. 磁黄铁矿氧化机理及酸性矿山废水防治的研究进展[J]. 环境污染与防治,2006,28(1):58-61.

    CAI M F, DANG Z. Mechanism of oxidation of pyrrhotite and prevention and treatment of acid mine wastewater [J]. Environmental Pollution and Control, 2006,28 (1): 58-61(in Chinese).

    [8] GIANNETTI B F, BONILLA S H, ZINOLA C F et al. A study of the main oxidation products of natural pyrite by voltammetric and photo electrochemical responses[J]. Hydrometallurgy, 2001,60(1):41-53.
    [9] 朱莉, 张德诚, 罗学刚. 黄铜矿在硫酸介质中浸出的电化学行为[J]. 金属矿山, 2008(5):66-69. JIA Li, ZHANG D C, LUO X G. Electrochemical behavior of leaching of chalcopyrite in sulfuric acid [J].Metal Mine, 2008

    (5): 66-69(in Chinese).

    [10] 赵晋宁, 易筱筠, 党志. 黄铜矿在含铁酸性介质中氧化过程的电化学研究[J]. 环境科学学报, 2013, 33(2):437-444.

    ZHAO J N, YI X J, DANG Z. Electrochemical study on the oxidation process of chalcopyrite in iron-containing acidic medium [J]. Journal of Environmental Science, 2013, 33 (2): 437-444(in Chinese).

    [11] SHU X H, DANG Z, ZHANG Q, et al. Passivation of metal-sulfide tailings by covalent coating [J]. Minerals Engineering, 2013, 42(3):36-42.
    [12] WANG J, GAN X, ZHAO H, et al. Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis[J]. Minerals Engineering, 2016, 98:264-278.
    [13] DEBERNARDI G, GENTINA J C, ALBISTUR P, et al. Evaluation of processing options to avoid the passivation of chalcopyrite[J]. International Journal of Mineral Processing, 2013, 125(125):1-4.
    [14] 舒小华. 金属硫化物矿山尾矿钝化及机理研究[D]. 广州:华南理工大学,2013. SHU X H. Metal sulfide mine tailings passivation and mechanism research [D]. Guangzhou: South China University of Technology, 2013(in Chinese).
    [15] VISHENKOVA D A, KOROTKOVA E I. Electrochemical methods for the determination of heparin[J]. Journal of Analytical Chemistry, 2017, 72(4):349-353.
    [16] ARCE E M, GONZALEZ I. A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in sulfuric acid solution[J].International Journal of Mineral Processing, 2002,67(1):17-28.
    [17] LAZARO I, MARTINEZ-MEDINA N, RODRIGUEZ I, et al. The use of carbon paste electrodes with non-conducting binder for the study of minerals: Chalcopyrite[J]. Hydrometallurgy, 1995,38(3):277-287.
    [18] MCGREGOR R G, BLOWES D W, JAMBOR J L, et al. The solid-phase controls on the mobility of heavy metals at the copper Cliff tailings area, Sudbury, Ontario, Canada[J].Journal of Contaminant Hydrology, 1998,33(3):247-271.
    [19] LEE J S, CHON H T. Hydrogeochemical characteristics of acid mine drainage in the vicinity of an abandoned mine, Daduk Creek, Korea[J].Journal of Geochemical Exploration, 2006,88(1):37-40.
    [20] BIEGLER T, HORNE M D. The electrochemistry of surface oxidation of chalcopyrite[J]. Journal of the Electrochemical Society, 1985,132(6):1363-1369.
    [21] CORDOBA E M, MUNOZ J A, BLAZQUEZ M L, et al. Passivation of chalcopyrite during its chemical leaching with ferric ion at 68 C[J]. Minerals Engineering, 2009,22(3):229-235.
    [22] LU Z Y, JEFFREY M I, LAWSON F. An electrochemical study of the effect of chloride ions on the dissolution of chalcopyrite in acidic solutions[J]. Hydrometallurgy, 2000,56(2):145-155.
    [23] PRICE D W, WARREN G W. The influence of silver ion on the electrochemical response of chalcopyrite and other mineral sulfide electrodes in sulfuric acid[J].Hydrometallurgy, 1986,15(3):303-324.
    [24] LU Z Y, JEFFREY M I, LAWSON F. Effect of chloride ions on the dissolution of chalcopyrite in acidic solutions[J].Hydrometallurgy, 2000,56(2):189-202.
    [25] ELSHERIEF A E. The influence of cathodic reduction, Fe2+and Cu2+ ions on the electrochemical dissolution of chalcopyrite in acidic solution[J]. Minerals Engineering, 2002,15(4):215-223.
    [26] LIU Y, DANG Z, WU P, et al. Influence of ferric iron on the electrochemical behavior of pyrite[J]. Ionics, 2011, 17(2):169-176.
    [27] CORDOBA E M, MUNOZ J A, BLAZQUEZ M L, et al. Leaching of chalcopyrite with ferric ion. Part Ⅰ: General aspects[J].Hydrometallurgy,2008,93(3):81-87.
    [28] HACKL R P, DREISINGER D B, PETERS E, et al. Passivation of chalcopyrite during oxidative leaching in sulfate media[J].Hydrometallurgy, 1995,39(1):25-48.
  • 加载中
计量
  • 文章访问数:  1287
  • HTML全文浏览数:  1261
  • PDF下载数:  241
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-08-13
  • 刊出日期:  2018-05-15
周树林, 舒小华, 丰顺, 刘杰, 朱园芳. 硬脂酸和油酸钝化黄铜矿表面的电化学研究[J]. 环境化学, 2018, 37(5): 1079-1088. doi: 10.7524/j.issn.0254-6108.2017081303
引用本文: 周树林, 舒小华, 丰顺, 刘杰, 朱园芳. 硬脂酸和油酸钝化黄铜矿表面的电化学研究[J]. 环境化学, 2018, 37(5): 1079-1088. doi: 10.7524/j.issn.0254-6108.2017081303
ZHOU Shulin, SHU Xiaohua, FENG Shun, LIU Jie, ZHU Yuanfang. Electrochemical study on the surface passivation of chalcopyrite by stearic acid and oleic acid[J]. Environmental Chemistry, 2018, 37(5): 1079-1088. doi: 10.7524/j.issn.0254-6108.2017081303
Citation: ZHOU Shulin, SHU Xiaohua, FENG Shun, LIU Jie, ZHU Yuanfang. Electrochemical study on the surface passivation of chalcopyrite by stearic acid and oleic acid[J]. Environmental Chemistry, 2018, 37(5): 1079-1088. doi: 10.7524/j.issn.0254-6108.2017081303

硬脂酸和油酸钝化黄铜矿表面的电化学研究

  • 1.  桂林理工大学, 环境污染控制理论与技术广西重点实验室, 桂林, 541004;
  • 2.  桂林理工大学环境科学与工程学院, 桂林, 541004
基金项目:

国家自然科学基金(41471270,51569008)和广西科学研究与技术开发计划项目(桂科重14124001-4)资助.

摘要: 以黄铜矿为研究对象,利用开路电位(OCP)、循环伏安(CV) 法,Tafel极化曲线和交流阻抗(EIS)等电化学方法,对硬脂酸和油酸对黄铜矿表面氧化的钝化过程和钝化机理进行了研究.研究结果表明,硬脂酸和油酸的加入有效抑制了黄铜矿的氧化,其抑制效率分别为58.1%和78.2%.电化学测量结果显示钝化剂的加入并没有改变黄铜矿的表面氧化还原的机理,而是通过在黄铜矿表面形成钝化膜,降低了体系的开路电位从而抑制了黄铜矿表面氧化.

English Abstract

参考文献 (28)

返回顶部

目录

/

返回文章
返回