土壤和沉积物中重金属锑及其价态分析方法研究进展

刘硕勋, 黄天舒, 颜耕, 陈皓, 陈玲. 土壤和沉积物中重金属锑及其价态分析方法研究进展[J]. 环境化学, 2018, 37(2): 271-278. doi: 10.7524/j.issn.0254-6108.2017081504
引用本文: 刘硕勋, 黄天舒, 颜耕, 陈皓, 陈玲. 土壤和沉积物中重金属锑及其价态分析方法研究进展[J]. 环境化学, 2018, 37(2): 271-278. doi: 10.7524/j.issn.0254-6108.2017081504
LIU Shuoxun, HUANG Tianshu, YAN Geng, CHEN Hao, CHEN Ling. Research progress on the analytical methods and speciation antimony in soils and sediments[J]. Environmental Chemistry, 2018, 37(2): 271-278. doi: 10.7524/j.issn.0254-6108.2017081504
Citation: LIU Shuoxun, HUANG Tianshu, YAN Geng, CHEN Hao, CHEN Ling. Research progress on the analytical methods and speciation antimony in soils and sediments[J]. Environmental Chemistry, 2018, 37(2): 271-278. doi: 10.7524/j.issn.0254-6108.2017081504

土壤和沉积物中重金属锑及其价态分析方法研究进展

  • 基金项目:

    国家科技支撑计划项目(2012BAJ24B00)资助.

Research progress on the analytical methods and speciation antimony in soils and sediments

  • Fund Project: Supported by Key Projects in the National Science & Technology Pillar Program(2012BAJ24B00).
  • 摘要: 锑作为一种具有潜在毒性的重金属元素,其环境行为越来越受到人们的关注.在对环境介质中总锑含量检测的同时,还需要进行其价态或形态分析方能够明确其环境污染水平和迁移行为,才能够更加有效地评估其环境风险.土壤和沉积物作为环境样品中较为复杂的两类,其处理流程是研究锑含量与形态的关键.本文综述了以土壤和沉积物为代表的环境样品中锑总量分析和形态分析的预处理方法和检测方法,对不同检测器的联用方法进行了对比分析,并对锑形态分析方法的发展方向做出了展望.
  • 加载中
  • [1] SMICHOWSKI P. Antimony in the environment as a global pollutant:A review on analytical methodologies for its determination in atmospheric aerosols[J]. Talanta, 2008,75(1):2-14.
    [2] 章海波, 骆永明, 李远, 等. 中国土壤环境质量标准中重金属指标的筛选研究[J]. 土壤学报, 2014, 51(3):429-438.

    ZHANG H B, LUO Y M, LI Y, et al. Screening of criteria for heavy metals for revision of the national standard for soil environmental quality of China[J]. Acta Pedologica Sinica, 2014, 51(3):429-438(in Chinese).

    [3] BEAUDON E, GABRIELLI P, SIERRA-HERNÁNDEZ M R, et al. Central tibetan plateau atmospheric trace metals contamination:A 500-year record from the puruogangri ice core[J]. Science of the Total Environment, 2017,601-602:1349-1363.
    [4]
    [5] MARCINKOWSKA M, BARALKIEWICZ D. Multielemental speciation analysis by advanced hyphenated technique-HPLC/ICP-MS:A review[J]. Talanta, 2016,161:177-204.
    [6] MIRAVET R, HERNÁNDEZ-NATAREN E, SAHUQUILLO A, et al. Speciation of antimony in environmental matrices by coupled techniques[J]. Trends in Analytical Chemistry, 2010,29(1):28-39.
    [7] 邵莉, 肖化云. 公路两侧大气颗粒物中的重金属污染特征及其影响因素[J]. 环境化学, 2012, 31(3):315-323.

    SHAO L, XIAO H Y. Pollution characterization and controlling factors of heavy metals in airborne particulate matter near expressway[J]. Environmental Chemistry, 2012, 31(3):315-323(in Chinese).

    [8] TAPIA J, AUDRY S, TOWNLEY B, et al. Geochemical background, baseline and origin of contaminants from sediments in the mining-impacted Altiplano and Eastern Cordillera of Oruro, Bolivia[J]. Geochemistry:Exploration, Environment, Analysis, 2012,12(1):3-20.
    [9] 齐文启, 曹杰山. 锑(Sb)的土壤环境背景值研究[J]. 土壤通报, 1991, 22(5):209-210.

    QI W Q, CAO J S. A study on the background concentration of antimony in soil[J]. Acta Pedologica Sinica, 1991(5):209-210(in Chinese).

    [10] 戴峰, 李晓斐. 上海地区13种金属土壤背景值初探[J]. 上海环境科学, 2009, 28(6):271-274.

    DAI F, LI X F. A preliminary study on background levels of thirteen priority metals in soil of Shanghai[J]. Shanghai Environmental Science, 2009(6):271-274(in Chinese).

    [11] WILSON S C, LOCKWOOD P V, ASHLEY P M, et al. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic:A critical review[J]. Environmental Pollution, 2010,158(5):1169-1181.
    [12] CHEN M, MA L Q, HARRIS W G. Baseline concentrations of 15 trace elements in Florida surface soils[J]. Journal of Environmental Quality, 1999,28(4):1173-1181.
    [13] 何孟常, 云影. 锑矿区土壤中锑的形态及生物有效性[J]. 环境化学, 2003, 22(2):126-130.

    HE M C, YUN Y. The speciation and bioavailability of antimony in the soils near antimony mine area[J]. Environmental Chemistry, 2003, 22(2):126-130(in Chinese).

    [14] 田衎, 邢书才, 杨郡, 等. 土壤/沉积物中重金属元素分析的前处理技术研究进展[J]. 光谱实验室, 2012, 29(1):247-251.

    TIAN K, XING S C, YANG J, et al. Research progress on pretreatment techniques of heavy metals analysis in soil and sediment[J]. Chinese Journal of Spectroscopy Laboratory, 2012, 29(1):247-251(in Chinese).

    [15] 邵莉. 江西省高速公路沿线环境介质中重金属污染特征及其影响因素研究[D]. 南昌:南昌大学, 2012. SHAO L. A study on the pollution characteristics of heavy metals in atmosphic particles, road dusts, and soils adjacent to three highways in Jiangxi province and their influencing factors[D]. Nanchang:Nanchang University, 2012(in Chinese).
    [16] 陈秋平, 胥思勤, 安艳玲, 等. 锑矿土壤中As和Sb的分布、形态及生物可利用性[J]. 环境化学, 2014, 33(8):1301-1306.

    CHEN Q P, XU S Q, AN Y L, et al. Distribution, speciation and bio-availability of arsenic(As) and antimony(Sb) in soil of antimony mine[J]. Environmental Chemistry, 2014, 33(8):1301-1306(in Chinese).

    [17] WISEMAN C L S, ZEREINI F, PVTTMANN W. Traffic-related trace element fate and uptake by plants cultivated in roadside soils in Toronto, Canada[J]. Science of the Total Environment, 2013,442:86-95.
    [18] 张更宇, 施云芬, 董湘军, 等. 电热消解-电感耦合等离子体质谱法测定准东煤中15种元素[J]. 冶金分析, 2017, 37(6):26-32.

    ZHANG G Y, SHI Y F, DONG X J, et al. Dtermination of fifteen elements in zhundong coal by inductively coupled plasma mass spectrometry combined with electric heating digestion[J]. Metallurgical Analysis, 2017, 37(6):26-32(in Chinese).

    [19] FILELLA M, WILLIAMS P A. Antimony interactions with heterogeneous complexants in waters, sediments and soils:A review of binding data for homologous compounds[J]. Chemie Der Erde-Geochemistry, 2012,724:49-65.
    [20] HU X, HE M. Organic ligand-induced dissolution kinetics of antimony trioxide[J]. Journal of Environmental Sciences, 2017,56:87-94.
    [21] DO NASCIMENTO C, AMARASIRIWARDENA D, XING B S. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil[J]. Environmental Pollution, 2006,140(1):114-123.
    [22] TELLA M, POKROVSKI G S. Stability and structure of pentavalent antimony complexes with aqueous organic ligands[J]. Chemical Geology, 2012,292:57-68.
    [23] QIN F, SHAN X Q, WEI B. Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils[J]. Chemosphere, 2004,57(4):253-263.
    [24] TELLA M, POKROVSKI G S. Antimony(Ⅲ) complexing with O-bearing organic ligands in aqueous solution:An X-ray absorption fine structure spectroscopy and solubility study[J]. Geochimica Et Cosmochimica Acta, 2009,73(2):268-290.
    [25] YANG H, HE M, WANG X. Concentration and speciation of antimony and arsenic in soil profiles around the world's largest antimony metallurgical area in China[J]. Environmental Geochemistry and Health, 2015,37(1):21-33.
    [26] QUIROZ W, ASTUDILLO F, BRAVO M, et al. Antimony speciation in soils, sediments and volcanic ashes by microwave extraction and HPLC-HG-AFS detection[J]. Microchemical Journal, 2016,129:111-116.
    [27] AMEREIH S, MEISEL T, SCHOLGER R, et al. Antimony speciation in soil samples along two Austrian motorways by HPLC-ID-ICP-MS[J]. Journal of Environmental Monitoring, 2005,7(12):1200-1206.
    [28] QUIROZ W, DE GREGORI I, BASILIO P, et al. Heavy weight vehicle traffic and its relationship with antimony content in human blood[J]. Journal of Environmental Monitoring, 2009,11(5):1051-1055.
    [29] MIRAVET R, LÓPEZ-SÁNCHEZ J F, RUBIO R. Leachability and analytical speciation of antimony in coal fly ash[J]. Analytica Chimica Acta, 2006,576(2):200-206.
    [30] 中华人民共和国环境保护部. HJ 803-2016土壤和沉积物12种金属元素的测定王水提取-电感耦合等离子体质谱法[S]. 北京:中国环境科学出版社, 2016.
    [31] MARCINKOWSKA M, KOMOROWICZ I, BARAŁKIEWICZ D. New procedure for multielemental speciation analysis of five toxic species:As(Ⅲ), As(Ⅴ), Cr(Ⅵ), Sb(IⅢ and Sb(Ⅴ) in drinking water samples by advanced hyphenated technique HPLC/ICP-DRC-MS[J]. Analytica Chimica Acta, 2016,920:102-111.
    [32] GE Z, WEI C. Simultaneous Analysis of Sb-Ⅲ, Sb-V and TMSb by high performance liquid chromatography-inductively coupled plasma-mass spectrometry detection:application to antimony speciation in soil samples[J]. Journal of Chromatographic Science, 2013,51(5):391-399.
    [33] MICHALSKI R, SZOPA S. Variability in inorganic As, Sb and Tl species concentrations in waters and bottom sediments of the Klodnica River (Poland)[J]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 2017,52(10):946-955.
    [34] WEI C, GE Z, CHU W, et al. Speciation of antimony and arsenic in the soils and plants in an old antimony mine[J]. Environmental and Experimental Botany, 2015,109:31-39.
    [35] YANG H, HE M. Speciation of antimony in soils and sediments by liquid chromatography-hydride generation-atomic fluorescence spectrometry[J]. Analytical Letters, 2015,48(12):1941-1953.
    [36] AMEREIH S, MEISEL T, KAHR E, et al. Speciation analysis of inorganic antimony in soil using HPLC-ID-ICP-MS[J]. Analytical and Bioanalytical Chemistry, 2005,383(7-8):1052-1059.
    [37] FARZANAAKTER K, CHEN Z, SMITH L, et al. Speciation of arsenic in ground water samples:A comparative study of CE-UV, HG-AAS and LC-ICP-MS[J]. Talanta, 2005,68(2):406-415.
    [38] MICHALKE B, SCHRAMEL P. Antimony speciation in environmental samples by interfacing capillary electrophoresis on-line to an inductively coupled plasma mass spectrometer[J]. Journal of Chromatography A, 1999,834(1-2):341-348.
    [39] BOND A M, KRATSIS S, NEWMAN O M G. Combined use of differential pulse adsorptive and anodic stripping techniques for the determination of antimony(Ⅲ) and antimony(Ⅴ) in zinc electrolyte[J]. Analytica Chimica Acta, 1998,372(3):307-314.
    [40] SILVA JUNIOR M M, PORTUGAL L A, SERRA A M, et al. On line automated system for the determination of Sb(Ⅴ), Sb(Ⅲ), thrimethyl antimony(v) and total antimony in soil employing multisyringe flow injection analysis coupled to HG-AFS[J]. Talanta, 2017,165:502-507.
    [41] QUIROZ W, CORTÉS M, ASTUDILLO F, et al. Antimony speciation in road dust and urban particulate matter in Valparaiso, Chile:Analytical and environmental considerations[J]. Microchemical Journal, 2013,110:266-272.
  • 加载中
计量
  • 文章访问数:  1508
  • HTML全文浏览数:  1388
  • PDF下载数:  678
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-08-15
  • 刊出日期:  2018-02-15

土壤和沉积物中重金属锑及其价态分析方法研究进展

  • 1.  同济大学环境科学与工程学院, 上海, 200092;
  • 2.  同济大学环境科学与工程学院, 污染控制与资源化研究国家重点实验室, 上海, 200092
基金项目:

国家科技支撑计划项目(2012BAJ24B00)资助.

摘要: 锑作为一种具有潜在毒性的重金属元素,其环境行为越来越受到人们的关注.在对环境介质中总锑含量检测的同时,还需要进行其价态或形态分析方能够明确其环境污染水平和迁移行为,才能够更加有效地评估其环境风险.土壤和沉积物作为环境样品中较为复杂的两类,其处理流程是研究锑含量与形态的关键.本文综述了以土壤和沉积物为代表的环境样品中锑总量分析和形态分析的预处理方法和检测方法,对不同检测器的联用方法进行了对比分析,并对锑形态分析方法的发展方向做出了展望.

English Abstract

参考文献 (41)

目录

/

返回文章
返回