多功能型天然高分子水处理剂的研究
Multi-functional natural polymer based water treatment agents
-
摘要: 化学药剂一直以来在水处理领域里发挥着重要作用,主要有混凝剂/絮凝剂、杀菌剂、阻垢剂等.传统的水处理剂往往功能较为单一,存在种类繁多、投加量大、设备复杂、操作繁琐等诸多问题.且不同的药剂之间还有可能互相抑制,降低水处理效率.因此,研发兼具混凝/絮凝、抑/灭菌、阻垢等多功能水处理剂已得到人们的广泛关注.近年来,天然高分子水处理剂由于其绿色环保等特点而备受瞩目,因此研发多功能型天然高分子水处理剂具有重要的科学和现实意义.然而,到目前为止,天然高分子水处理剂的开发与应用还十分有限,作用机制也很不清楚,均有待进一步的深入研究.本文首先依次介绍了混凝剂/絮凝剂、杀菌剂与阻垢剂,并从其作用机理与材料结构特征出发,对其多功能性的实现进行了探讨;重点介绍目前絮凝-抑/灭菌双功能和絮凝-阻垢双功能天然高分子水处理剂的研发进展;同时从构效关系等角度出发,展望了多功能型天然高分子水处理剂的未来发展.Abstract: Water treatment agents, including coagulants/flocculants, bactericidal agents, and scale inhibitors, play important roles in the field of water treatment. However, traditional water treatment agents usually bear only single function, which result in a wide variety of agents with high doses, complicated devices, and fussy operations in real applications. Thus, it is of great significance in scientific research and practical applications to develop multifunctional water treatment agents containing coagulation/flocculation, bacteriostasis/sterilization, and scale inhibition. Moreover, natural polymer based water agents have been recently paid much more attentions due to their vital characteristics of high efficiency, low cost, and environmental friendliness. It is greatly significant to develop natural polymer based multi-functional water treatment agents. However, field operation datas in natural polymer based multi-functional water treatment agents are very limited, and their widespread use awaits field operation experience. This paper introduces coagulants/flocculants, bactericidal agents, and scale inhibitors as well as their application mechanisms. On the basis of structure-activity relationship, the realization of their multiple functions and the future development have been discussed in detail.
-
-
[1] SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185):301-310. [2] SCHWARZENBACH R P, ESCHER B I, FENNER K, et al. The challenge of micropollutants in aquatic systems[J]. Science, 2006, 313(5790):1072-1077. [3] 张立珠, 赵雷. 水处理剂:配方·制备·应用[M]. 北京:化学工业出版社, 2010. ZHANG L Z, ZHAO L. Water treatment agents:Formula, Preparation and Application[M]. Beijing:Chemical Industry Press, 2010(in Chinese). [4] 李道荣. 水处理剂概论[M]. 北京:化学工业出版社, 2008. LI D R. An Overview of Water Treatment Chemicals[M]. Beijing:Chemical Industry Press, 2005(in Chinese). [5] SHARMA B R, DHULDHOYA N C, MERCHANT U C. Flocculants-an ecofriendly approach[J]. Journal of Polymers and the Environment, 2006, 14(2):195-202. [6] HASSON D, SHEMER H, SHER A. State of the art of friendly "green" scale control inhibitors:A review article[J]. Industrial & Engineering Chemistry Research, 2011, 50(12):7601-7607. [7] GOY R C, BRITTO D, ASSIS O B G. A review of the antimicrobial activity of chitosan[J]. Polímeros, 2009, 19(3):241-247. [8] MARTINOD A, EUVRARD M, FOISSY A, et al. Progressing the understanding of chemical inhibition of mineral scale by green inhibitors[J]. Desalination, 2008, 220(1-3):345-352. [9] DEREK R. Use of phosphoramides as corrosion inhibitors[P]. United States, No 3591330. 1971. [10] 肖锦. 多功能水处理剂[M]. 北京:化学工业出版社, 2008. XIAO J. Multifunctional agents for water treatment[M]. Beijing:Chemical Industry Press, 2008(in Chinese). [11] MATILAINEN A, VEPSALAINEN M, SILLABPAA M. Natural organic matter removal by coagulation during drinking water treatment:A review[J]. Adcances in Colloid and Interface Science, 2010, 159(2):189-197. [12] 李风亭、张善发、赵艳. 混凝剂与絮凝剂[M]. 北京:化学工业出版社, 2005. LI F T, ZHANG S F, ZHAO Y. Coagulants and Flocculants[M]. Beijing:Chemical Industry Press, 2005(in Chinese). [13] WU Y F, LIU W, GAO N Y, et al. A study of titanium sulfate flocculation for water treatment[J]. Water Research, 2011, 45(12):3704-3711. [14] BOLTO B A. Soluble polymers in water purification[J]. Progress in Polymer Science, 1995, 20(6):987-1041. [15] MONJE-RAMIREZ I, de Velasquez M T O. Removal and transformation of recalcitrant organic matter from stabilized saline landfill leachates by coagulation-ozonation coupling processes[J]. Water Research, 2004, 38(9):2358-2366. [16] BOLTO B, GREGORY J. Organic polyelectrolytes in water treatment[J]. Water Research, 2007, 41(11):2301-2324. [17] 汤鸿霄. 无机高分子絮凝理论与絮凝剂[M]. 北京:中国建筑工业出版社出版, 2006. TANG H X. Inorganic polymer flocculatants and flocculation theory[M]. Beijing:China Architecture & Building Press, 2006(in Chinese). [18] 张俐娜. 天然高分子改性材料及应用[M]. 北京:化学工业出版社, 2006. ZHANG L L. Modified material and application of natural polymers[M]. Beijing:Chemical Industry Press, 2006(in Chinese). [19] YANG R, LI H J, HUANG M, et al. A review on chitosan-based flocculants and their applications in water treatment[J]. Water Research, 2016, 95:59-89. [20] ZHOU Y, FRANKS G V. Flocculation mechanism induced by cationic polymers investigated by light scattering[J]. Langmuir, 2006, 22(16):6775-6786. [21] THOMAS D N, JUDD S J, FAWCETT N. Flocculation modelling:A review[J]. Water Research, 1999, 33(7):1579-1592. [22] LYKLEMA J. Modern trends of colloid science in chemistry and biology[M]. Switzerland:Birkhäuser Basel, 1985:55-73. [23] GREGORY J. Particles in water:properties and processes[M]. Florida:CRC Press, 2004. [24] 徐晓军. 化学絮凝剂作用原理[M]. 北京:科学出版社, 2005. XU X J. Mechanisms of chemical flocculants[M]. Beijing:Science Press, 2005(in Chinese). [25] DUAN J M, GREGORY J. Coagulation by hydrolysing metal salts[J]. Advances in Colloid and Interface Science, 2003, 100:475-502. [26] YANG Z, YUAN B, HUANG X, et al. Evaluation of the flocculation performance of carboxymethyl chitosan-graft-polyacrylamide, a novel amphoteric chemically bonded composite flocculant[J]. Water Research, 2012, 46(1):107-114. [27] ROUSSY J, VAN VOOREN M, DEMPSEY B A, et al. Influence of chitosan characteristics on the coagulation and the flocculation of bentonite suspensions[J]. Water Research, 2005, 39(14):3247-3258. [28] GREGORY J, BARANY S. Adsorption and flocculation by polymers and polymer mixtures[J]. Advances in Colloid and Interface Science, 2011, 169(1):1-12. [29] DEBORDE M, von GUNTEN U. Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms:A critical review[J]. Water Research, 2008, 42(1-2):13-51. [30] HUERTA-FONTELA M, TERESA GALCERAN M, VENTURA F. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment[J]. Water Research, 2011, 45(3):1432-1442. [31] JIANG J Q, LLOYD B. Progress in the development and use of ferrate (VI) salt as an oxidant and coagulant for water and wastewater treatment[J]. Water Research, 2002, 36(6):1397-1408. [32] PATTANAYAIYING R, H-KITTIKUN A, CUTTER C N. Effect of lauric arginate, nisin Z, and a combination against several food-related bacteria[J]. International Journal of Food Microbiology, 2014, 188:135-146. [33] ZHANG H, OYANEDEL-CRAVER V. Comparison of the bacterial removal performance of silver nanoparticles and a polymer based quaternary amine functiaonalized silsesquioxane coated point-of-use ceramic water filters[J]. Journal of Hazardous Materials, 2013, 260:272-277. [34] TRUEBA A, OTERO F M, GONZALEZ J A, et al. Study of the activity of quaternary ammonium compounds in the mitigation of biofouling in heat exchangers-condensers cooled by seawater[J]. Biofouling, 2013, 29(9):1139-1151. [35] FINNEGAN M, LINLEY E, DENYER S P, et al. Mode of action of hydrogen peroxide and other oxidizing agents:differences between liquid and gas forms[J]. Journal of Antimicrobial Chemotherapy, 2010, 65(10):2108-2115. [36] SIEDENBIEDEL F, TILLER J C. Antimicrobial polymers in solution and on surfaces:overview and functional principles[J]. Polymers, 2012, 4:46-71. [37] MAILLARD J Y. Bacterial target sites for biocide action[J]. Journal of Applied Microbiology, 2002, 92(s1):16S-27S. [38] LINLEY E, DENYER S P, MCDONNELL G, et al. Use of hydrogen peroxide as a biocide:new consideration of its mechanisms of biocidal action[J]. Journal of Antimicrobial Chemotherapy, 2012, 67(7):1589-1596. [39] RABEA E I, BADAWY M E T, STEVENS C V, et al. Chitosan as antimicrobial agent:applications and mode of action[J]. Biomacromolecules, 2003, 4(6):1457-1465. [40] KIM M-M, AU J, RAHARDIANTO A, et al. Impact of conventional water treatment coagulants on mineral scaling in RO desalting of brackish water[J]. Industrial & Engineering Chemistry Research, 2009, 48(6):3126-3135. [41] ANTONY A, LOW J H, GRAY S, et al. Scale formation and control in high pressure membrane water treatment systems:A review[J]. Journal of Membrane Science, 2011, 383(1-2):1-16. [42] LIN Y P, SINGER P C. Inhibition of calcite crystal growth by polyphosphates[J]. Water Research, 2005, 39(19):4835-4843. [43] AMJAD Z. The science and technology of industrial water treatment[M]. Florida:CRC Press, 2010. [44] BOELS L, KEESMAN K J, WITKAMP G J. Adsorption of phosphonate antiscalant from reverse osmosis membrane concentrate onto granular ferric hydroxide[J]. Environmental Science & Technology, 2012, 46(17):9638-9645. [45] KNEPPER T P. Synthetic chelating agents and compounds exhibiting complexing properties in the aquatic environment[J]. TrAC Trends in Analytical Chemistry, 2003, 22(10):708-724. [46] SHAKKTHIVEL P, VASUDEVAN T. Acrylic acid-diphenylamine sulphonic acid copolymer threshold inhibitor for sulphate and carbonate scales in cooling water systems[J]. Desalination, 2006, 197(1-3):179-189. [47] WANG C, LI S P, LI T D. Calcium carbonate inhibition by a phosphonate-terminated poly(maleic-co-sulfonate) polymeric inhibitor[J]. Desalination, 2009, 249(1):1-4. [48] 张彦河,郭茹辉,张利辉,等. 乌头酸-丙烯酸共聚物的合成及性能研究[J]. 工业水处理,2005, 25(2):48-50. ZHANG Y H, GUO R H, ZHANG L H, et al. Study on the synthesis and performance of aconitic acid-acrylic acid copolymer[J]. Industrial Water Treatment, 2005, 25(2):48-50(in Chinese).
[49] WANG Y W, LI A M, YANG H. Effects of substitution degree and molecular weight of carboxymethyl starch on its scale inhibition[J]. Desalination, 2017, 408:60-69. [50] GUO X R, QIU F X, DONG K, et al. Scale inhibitor copolymer modified with oxidized starch:synthesis and performance on scale inhibition[J]. Polymer-Plastics Technology and Engineering, 2013, 52(3):261-267. [51] OUYANG X P, QIU X Q, LOU H M, et al. Corrosion and scale inhibition properties of sodium lignosulfonate and its potential application in recirculating cooling water system[J]. Industrial & Engineering Chemistry Research, 2006, 45(16):5716-5721. [52] GUO X R, QIU F X, DONG K, et al. Preparation, characterization and scale performance of scale inhibitor copolymer modification with chitosan[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(6):2177-2183. [53] DARTON E G. Membrane chemical research:Centuries apart[J]. Desalination, 2000, 132(1-3):121-131. [54] TANTAYAKOM V, SREETHAWONG T, FOGLER H S, et al. Scale inhibition study by turbidity measurement[J]. Journal of Colloid and Interface Science, 2005, 284(1):57-65. [55] REDDY M M, HOCH A R. Calcite crystal growth rate inhibition by polycarboxylic acids[J]. Journal of Colloid and Interface Science, 2001, 235(2):365-370. [56] LABILLE J, THOMAS F, MILAS M, et al. Flocculation of colloidal clay by bacterial polysaccharides:effect of macromolecule charge and structure[J]. Journal of Colloid and Interface Science, 2005, 284(1):149-156. [57] 李永峰, 黄中子, 徐菁利. 聚丙烯酰胺混凝剂的合成和混凝应用的研究[J]. 黑龙江科学, 2010, 1(3):5-11. LI Y F, HUANG Z Z, U J L. The synthesis of PAM flocculants and its flocculation application[J]. Heilongjiang Science, 2010, 1(3):5-11(in Chinese).
[58] LIU X F, GUAN Y L, YANG D Z, et al. Antibacterial action of chitosan and carboxymethylated chitosan[J]. Journal of Applied Polymer Science, 2001, 79(7):1324-1335. [59] LIU H, DU Y M, WANG X H, et al. Chitosan kills bacteria through cell membrane damage[J]. International Journal of Food Microbiology, 2004, 95(2):147-155. [60] ZHENG L Y, ZHU J F. Study on antimicrobial activity of chitosan with different molecular weights[J]. Carbohydrate Polymers, 2003, 54(4):527-530. [61] NO H K, PARK N Y, LEE S H, et al. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights[J]. International Journal of Food Microbiology, 2002, 74(1-2):65-72. [62] STRAND S P, VARUM K M, ØSTGAARD K. Interactions between chitosans and bacterial suspensions:Adsorption and flocculation[J]. Colloids and Surfaces B:Biointerfaces, 2003, 27(1):71-81. [63] YANG Z, DEGORCE-DUMAS J R, YANG H, et al. Flocculation of escherichia coli using a quaternary ammonium salt grafted carboxymethyl chitosan flocculant[J]. Environmental Science & Technology, 2014, 48(12):6867-6873. [64] SONG Y B, ZHANG J, GAN W P, et al. Flocculation properties and antimicrobial activities of quaternized celluloses synthesized in NaOH/urea aqueous solution[J]. Industrial & Engineering Chemistry Research, 2009, 49(3):1242-1246. [65] MAZEIKA D, STRECKIS S, RADZEVICIUS K, et al. Flocculation of bacillus amyloliquefaciens h disintegrates with cationized starch and aminated hydroxyethylcellulose[J]. Journal of Dispersion Science and Technology, 2014, 36(1):146-153. [66] ROWETON S, HUANG S J, SWIFT G. Poly (aspartic acid):Synthesis, biodegradation, and current applications[J]. Journal of environmental polymer degradation, 1997, 5(3):175-181. [67] ZHANG Y, YIN H Q, ZHANG Q S, et al. Synthesis and characterization of novel polyaspartic acid/urea graft copolymer with acylamino group and its scale inhibition performance[J]. Desalination, 2016, 35:92-98. [68] 路长青, 汪鹰, 马迎军, 等. 磺酸共聚物的合成及阻垢分散性能的研究[J]. 工业水处理, 1995, 15(3):14-17. LU C Q, WANG Y, MA Y J, et al. Synthesis and scale inhibition/dispersion properties of sulfonic acid copolymer[J]. Industrial water treatment, 1995, 15(3):14-17(in Chinese).
[69] RAHUL R, KUMAR S, JHA U, et al. Cationic inulin:A plant based natural biopolymer for algal biomass harvesting[J]. International Journal of Biological Macromolecules, 2015, 72:868-874. [70] BANERJEE C, GHOSH S, SEN G, et al. Study of algal biomass harvesting using cationic guar gum from the natural plant source as flocculant[J]. Carbohydrate Polymers, 2013, 92(1):675-681. [71] BISWAL D R, SINGH R P. Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer[J]. Carbohydrate Polymers, 2004, 57(4):379-387. [72] YAN L F, TAO H Y, BANGAL P R. Synthesis and flocculation behavior of cationic cellulose prepared in a NaOH/urea aqueous solution[J]. CLEAN-Soil, Air, Water, 2009, 37(1):39-44. [73] KURITA K. Controlled functionalization of the polysaccharide chitin[J]. Progress in Polymer Science, 2001, 26(9):1921-1971. [74] THARANATHAN R N. Starch-value addition by modification[J]. Critical Reviews in Food Science and Nutrition, 2005, 45(5):371-384. [75] HEINZE T, LIEBERT T. Unconventional methods in cellulose functionalization[J]. Progress in Polymer Science, 2001, 26(9):1689-1762. [76] SHOGREN R L. Flocculation of kaolin by waxy maize starch phosphates[J]. Carbohydrate Polymers, 2009, 76(4):639-644. [77] XIE C X, FENG Y J, CAO W P, et al. Novel biodegradable flocculating agents prepared by phosphate modification of Konjac[J]. Carbohydrate Polymers, 2007, 67(4):566-571. [78] HOKKANEN S, REPO E, SILLANPAA M. Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose[J]. Chemical Engineering Journal, 2013, 223:40-47. [79] XIAO B, SUN X F, SUN R C. The chemical modification of lignins with succinic anhydride in aqueous systems[J]. Polymer Degradation and Stability, 2001, 71(2):223-231. [80] FLORY P J. Principles of polymer chemistry[M]. New York:Cornell University Press, 1953. [81] ARAI K, CERESA R. Block and graft copolymerization[M]. Vol 1. New York:Wiley Interscience, 1973. [82] LEE J S, KUMAR R N, ROZMAN H D, et al. Pasting, swelling and solubility properties of UV initiated starch-graft-poly(AA)[J]. Food Chemistry, 2005, 91(2):203-211. [83] ZHAO L, MITOMO H, ZHAI M L, et al. Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation[J]. Carbohydrate Polymers, 2003, 53(4):439-446. [84] SINGH V, KUMAR P, SANGHI R. Use of microwave irradiation in the grafting modification of the polysaccharides-A review[J]. Progress in Polymer Science. 2012, 37(2):340-364. [85] WANG J P, CHEN Y Z, ZHANG S J, et al. A chitosan-based flocculant prepared with gamma-irradiation-induced grafting[J]. Bioresource Technology, 2008, 99(9):3397-3402. [86] MISHRA S, MUKUL A, SEN G, et al. Microwave assisted synthesis of polyacrylamide grafted starch (St-g-PAM) and its applicability as flocculant for water treatment[J]. International Journal of Biological Macromolecules, 2011, 48(1):106-111. [87] TRIPATHY J, MISHRA D K, BEHARI K. Graft copolymerization of N-vinylformamide onto sodium carboxymethylcellulose and study of its swelling, metal ion sorption and flocculation behaviour[J]. Carbohydrate Polymers, 2009, 75(4):604-611. [88] LⅡMATAINEN H, VISANKO M, SIRVIO J A, et al. Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation[J]. Biomacromolecules, 2012, 13(5):1592-1597. [89] JIANG Y X, JU B Z, ZHANG S F, et al. Preparation and application of a new cationic starch ether-Starch-methylene dimethylamine hydrochloride[J]. Carbohydrate Polymers, 2010, 80(2):467-473. [90] SUOPAJARVI T, LⅡMATAINEN H, HORMI O, et al. Coagulation-flocculation treatment of municipal wastewater based on anionized nanocelluloses[J]. Chemical Engineering Journal, 2013, 231:59-67. [91] FANG R, CHENG X S, XU X R. Synthesis of lignin-base cationic flocculant and its application in removing anionic azo-dyes from simulated wastewater[J]. Bioresource Technology, 2010, 101(19):7323-7329. [92] CAI T, YANG Z, LI H J, et al. Effect of hydrolysis degree of hydrolyzed polyacrylamide grafted carboxymethyl cellulose on dye removal efficiency[J]. Cellulose, 2013, 20(5):2605-2614. [93] SEN G, GHOSH S, JHA U, et al. Hydrolyzed polyacrylamide grafted carboxymethylstarch (Hyd. CMS-g-PAM):An efficient flocculant for the treatment of textile industry wastewater[J]. Chemical Engineering Journal, 2011, 171(2):495-501. [94] LIU Z Z, WEI H, LI A M, et al. Evaluation of structural effects on the flocculation performance of a co-graft starch-based flocculant[J]. Water Research, 2017, 118:160-166. [95] Du Q, WEI H, LI A M, et al. Evaluation of the starch-based flocculants on flocculation of hairwork wastewater[J]. Science of the Total Environment, 2017, 601-602:1628-1637. [96] QUINLAN P M. Silicon-containing quaternary ammonium thiazines[P]:United States, No 4418195, 1983. [97] GODOS D I, GUZMAN H O, SOTO R, et al. Coagulation/flocculation-based removal of algal-bacterial biomass from piggery wastewater treatment[J]. Bioresource Technology, 2011, 102(2):923-927. [98] ZHANG W X, SHANG Y B, YUAN B, et al. The flocculating properties of chitosan-graft-polyacrylamide flocculants (Ⅱ)-Test in pilot scale[J]. Journal of Applied Polymer Science, 2010, 117(4):2016-2024. [99] YANG Z, WU H, YUAN B, et al. Synthesis of amphoteric starch-based grafting flocculants for flocculation of both positively and negatively charged colloidal contaminants from water[J]. Chemical Engineering Journal, 2014, 244:209-217. [100] LI H J, CAI T, YUAN B, et al. Flocculation of both kaolin and hematite suspensions using the starch-based flocculants and their floc properties[J]. Industrial & Engineering Chemistry Research, 2015, 54(1):59-67. [101] HELANDER I M, NURMIAHO-LASSILA E-L, AHVENAINEN R, et al. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria[J]. International Journal of Food Microbiology, 2001, 71(2-3):235-244. [102] STRAND S P, NORDENGEN T, ØSTGAARD K. Efficiency of chitosans applied for flocculation of different bacteria[J]. Water Research, 2002, 36(19):4745-4752. [103] HUGHES J, RAMSDEN D K, SYMES K C. The flocculation of bacteria using cationic synthetic flocculants and chitosan[J]. Biotechnology Techniques, 1990, 4(1):55-60. [104] PEI H-Y, MA C-X, HU W-R, et al. The behaviors of microcystis aeruginosa cells and extracellular microcystins during chitosan flocculation and flocs storage processes[J]. Bioresource Technology, 2014, 151:314-322. [105] LI Y, CHEN X G, LIU N, et al. Physicochemical characterization and antibacterial property of chitosan acetates[J]. Carbohydrate Polymers, 2007, 67(2):227-232. [106] FERFERA-HARRAR H, AIOUAZ N, DAIRI N, et al. Preparation of chitosan-g-poly (acrylamide)/montmorillonite superabsorbent polymer composites:Studies on swelling, thermal, and antibacterial properties[J]. Journal of Applied Polymer Science, 2014, 131(1):1-14. [107] TANG H, ZHANG P, KIEFT T L, et al. Antibacterial action of a novel functionalized chitosan-arginine against Gram-negative bacteria[J]. Acta Biomaterialia, 2010, 6(7):2562-2571. [108] SAJOMSANG W, RUKTANONCHAI U R, GONIL P, et al. Quaternization of N-(3-pyridylmethyl) chitosan derivatives:Effects of the degree of quaternization, molecular weight and ratio of N-methylpyridinium and N,N,N-trimethyl ammonium moieties on bactericidal activity[J]. Carbohydrate Polymers, 2010, 82(4):1143-1152. [109] HUANG M, WANG Y W, CAI J, et al. Preparation of dual-function starch-based flocculants for the simultaneous removal of turbidity and inhibition of Escherichia coli in water[J]. Water Research, 2016, 98:128-137. [110] LIU Z Z, HUANG M, LI A M, et al. Flocculation and antimicrobial properties of a cationized starch[J]. Water Research, 2017, 119:57-66. [111] HUANG M, LIU Z Z, LI A M, et al. Dual functionality of a graft starch flocculant:Flocculation and antibacterial performance[J]. Journal of Environmental Management, 2017, 196, 63-71. [112] 蒋挺大. 壳聚糖[M]. 北京:化学工业出版社, 2007. JIANG T D. Chitosan[M]. Beijing:Chemical industry press, 2007(in Chinese). [113] KUMAR M N V R. A review of chitin and chitosan applications[J]. Reactive and Functional Polymers, 2000, 46(1):1-27. [114] DIVAKARAN R, PILLAI V N S. Flocculation of kaolinite suspensions in water by chitosan[J]. Water Research, 2001, 5(16):3904-3908. [115] YANG H, LU Y, CHENG R S. Handbook of chitosan research and applications:Research progress on the preparation and application of amphoteric chitosan[M]. New York:Nova Science Publishers, 2011:227-240. [116] RINAUDO M. Chitin and chitosan:Properties and applications[J]. Progress in Polymer Science, 2006, 31(7):603-632. [117] GUIBAL E, VAN VOOREN M, DEMPSEY B A, et al. A review of the use of chitosan for the removal of particulate and dissolved contaminants[J]. Separation Science and Technology, 2006, 41(11):2487-2514. [118] LI K, LI P, CAI J, et al. Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent[J]. Chemosphere, 2016, 154:310-318. [119] RENAULT F, SANCEY B, BADOT P-M, et al. Chitosan for coagulation/flocculation processes-an eco-friendly approach[J]. European Polymer Journal, 2009, 45(5):1337-1348. [120] CRINI G, BADOT P-M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies:A review of recent literature[J]. Progress in Polymer Science, 2008, 33(4):399-447. [121] LIU N, CHEN X G, PARK H J, et al. Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli[J]. Carbohydrate Polymers, 2006, 64(1):60-65. [122] STRAND S P, VANDVIK M S, VARUM K M, et al. Screening of chitosans and conditions for bacterial flocculation[J]. Biomacromolecules, 2001, 2(1):126-133. [123] WU H, YANG R, LI R H, et al. Modeling and optimization of the flocculation processes for removal of cationic and anionic dyes from water by an amphoteric grafting chitosan-based flocculant using response surface methodology[J]. Environmental Science and Pollution Research, 2015, 22(17):13038-13048. [124] YANG Z, LI H J, YAN H, et al. Evaluation of a novel chitosan-based flocculant with high flocculation performance, low toxicity and good floc properties[J]. Journal of Hazardous Materials, 2014, 276:480-488. [125] CUERO R G, DUFFUS E, OSUJI G, et al. Aflatoxin control in preharvest maize:Effects of chitosan and two microbial agents[J]. Journal of Agricultural Science. 1991, 117(2):165-169. [126] DONG C L, CHEN W, LIU C. Flocculation of algal cells by amphoteric chitosan-based flocculant[J]. Bioresource Technology, 2014, 170:239-247. [127] WANG J P, YUAN S J, WANG Y, et al. Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties[J]. Water Research, 2013, 47(8):2643-2648. [128] VANDAMME D, FOUBERT I, MEESSCHAERT B, et al. Flocculation of microalgae using cationic starch[J]. Journal of Applied Phycology, 2010, 22(4):525-530. [129] WANG L, LIANG W Y, YU J, et al. Flocculation of Microcystis aeruginosa using modified larch tannin[J]. Environmental Science & Technology, 2013, 47(11):5771-5777. [130] FERREIRA R S, NAPOLEAO T H, SANTOS A F S, et al. Coagulant and antibacterial activities of the water-soluble seed lectin from Moringa oleifera[J]. Letters in Applied Microbiology, 2011, 53(2):186-192. [131] YANG Z, YANG H, JIANG Z W, et al. Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide[J]. Journal of Hazardous Materials, 2013, 254-255:36-45. [132] SINGH R P, PAL S, RANA V K, et al. Amphoteric amylopectin:A novel polymeric flocculant[J]. Carbohydrate Polymers, 2013, 91(1):294-299. [133] PAL S, GHORAI S, DASH M K, et al. Flocculation properties of polyacrylamide grafted carboxymethyl guar gum (CMG-g-PAM) synthesised by conventional and microwave assisted method[J]. Journal of Hazardous Materials, 2011, 192(3):1580-1588. [134] GAMAGE A, SHAHIDI F. Use of chitosan for the removal of metal ion contaminants and proteins from water[J]. Food Chemistry, 2007, 104(3):989-996. [135] ZHANG H X, SUN D X, ZHU Y C, et al. Preparation of carboxymethyl-quaternized oligochitosan and its scale inhibition and antibacterial activity[J]. Journal of Water Reuse and Desalination, 2014, 4(2):65-75. [136] DEMADIS K D, KETSETZI A, PACHIS K, et al. Inhibitory effects of multicomponent, phosphonate-grafted, zwitterionic chitosan biomacromolecules on silicic acid condensation[J]. Biomacromolecules, 2008, 9(11):3288-3293. [137] CHAUHAN K, KUMAR R, KUMAR M, et al. Modified pectin-based polymers as green antiscalants for calcium sulfate scale inhibition[J]. Desalination, 2012, 305:31-37. [138] ZHANG H X, WANG F, JIN X H, et al. A botanical polysaccharide extracted from abandoned corn stalks:Modification and evaluation of its scale inhibition and dispersion performance[J]. Desalination, 2013, 326:55-61. [139] LAKSHTANOV L Z, BOVET N, STIPP S L S. Inhibition of calcite growth by alginate[J]. Geochimica et Cosmochimica Acta, 2011, 75(14):3945-3955. [140] BUTLER M F, GLASER N, WEAVER A C, et al. Calcium carbonate crystallization in the presence of biopolymers[J]. Crystal Growth & Design, 2006, 6(3):781-794. [141] VERRAEST D L, PETERS J A, VAN BEKKUM H, et al. Carboxymethyl inulin:A new inhibitor for calcium carbonate precipitation[J]. Journal of the American Oil Chemists' Society, 1996, 73(1):55-62. [142] DEMADIS K D, STATHOULOPOULOU A. Multifunctional, environmentally friendly additives for control of inorganic foulants in industrial water and process applications[J]. Materials Performance, 2006, 45(1):40-44. [143] KETSETZI A, STATHOULOPOULOU A, DEMADIS K D. Being "green" in chemical water treatment technologies:issues, challenges and developments[J]. Desalination, 2008, 223(1/3):487-493. [144] MIKSIC B A, FURMAN A, KHARSHAN M. Vapor corrosion and scale inhibitors formulated from biodegradable and renewable raw materials[C]. 10th European Symposium on Corrosion and Scale Inhibitors, 2005. [145] FATOMBI J K. Flocculation of kaolinite suspensions in water by coconut cream casein[J]. Journal of Water Resource and Protection, 2011, 3(12):918-924. [146] SEKI H, SUZUKI A, SHINGUH M, et al. Flocculation of diatomite by methylated milk casein in seawater[J]. Journal of Colloid and Interface Science, 2004, 270(2):359-363. [147] SINHA S, MISHRA S, SEN G. Microwave initiated synthesis of polyacrylamide grafted casein (CAS-g-PAM)——its application as a flocculant[J]. International Journal of Biological Macromolecules, 2013, 60:141-147. [148] QIANG X H, SHENG Z H, ZHANG H. Study on scale inhibition performances and interaction mechanism of modified collagen[J]. Desalination, 2013, 309:237-242. [149] BANERJEE S, LE T. Scale inhibition and removal in continuous pulp digesters[J]. Industrial & Engineering Chemistry Research, 2012, 51(30):10283-10286. [150] BRATSKAYA S, SCHWARZ S, LAUBE J, et al. Effect of polyelectrolyte structural features on flocculation behavior:Cationic polysaccharides vs. synthetic polycations[J]. Macromolecular Materials and Engineering, 2005, 290(8):778-785. [151] QIAN J W, XIANG X J, YANG W Y, et al. Flocculation performance of different polyacrylamide and the relation between optimal dose and critical concentration[J]. European Polymer Journal, 2004, 40(8):1699-1704. [152] CAI Z C, DAI J, YANG H, et al.Study on the interfacial properties of viscous capillary flow of dilute acetic acid solutions of chitosan[J]. Carbohydrate Polymers, 2009, 78(3):488-491. [153] ZHONG D, HUANG X, YANG H, et al. New insights into viscosity abnormalities of sodium alginate aqueous solutions[J]. Carbohydrate Polymers, 2010, 81(4):948-952. [154] YANG H, ZHENG Q, CHENG R S. New Insight into "Polyelectrolyte Effect"[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2012, 407:1-8. -

计量
- 文章访问数: 1500
- HTML全文浏览数: 1474
- PDF下载数: 219
- 施引文献: 0