多功能型天然高分子水处理剂的研究

余伟, 黄牧, 李爱民, 杨琥. 多功能型天然高分子水处理剂的研究[J]. 环境化学, 2018, 37(6): 1293-1310. doi: 10.7524/j.issn.0254-6108.2017091302
引用本文: 余伟, 黄牧, 李爱民, 杨琥. 多功能型天然高分子水处理剂的研究[J]. 环境化学, 2018, 37(6): 1293-1310. doi: 10.7524/j.issn.0254-6108.2017091302
YU Wei, HUANG Mu, LI Aimin, YANG Hu. Multi-functional natural polymer based water treatment agents[J]. Environmental Chemistry, 2018, 37(6): 1293-1310. doi: 10.7524/j.issn.0254-6108.2017091302
Citation: YU Wei, HUANG Mu, LI Aimin, YANG Hu. Multi-functional natural polymer based water treatment agents[J]. Environmental Chemistry, 2018, 37(6): 1293-1310. doi: 10.7524/j.issn.0254-6108.2017091302

多功能型天然高分子水处理剂的研究

  • 基金项目:

    国家自然科学基金(51778279)资助.

Multi-functional natural polymer based water treatment agents

  • Fund Project: Supported by the National Natural Science Foundation of China(51778279).
  • 摘要: 化学药剂一直以来在水处理领域里发挥着重要作用,主要有混凝剂/絮凝剂、杀菌剂、阻垢剂等.传统的水处理剂往往功能较为单一,存在种类繁多、投加量大、设备复杂、操作繁琐等诸多问题.且不同的药剂之间还有可能互相抑制,降低水处理效率.因此,研发兼具混凝/絮凝、抑/灭菌、阻垢等多功能水处理剂已得到人们的广泛关注.近年来,天然高分子水处理剂由于其绿色环保等特点而备受瞩目,因此研发多功能型天然高分子水处理剂具有重要的科学和现实意义.然而,到目前为止,天然高分子水处理剂的开发与应用还十分有限,作用机制也很不清楚,均有待进一步的深入研究.本文首先依次介绍了混凝剂/絮凝剂、杀菌剂与阻垢剂,并从其作用机理与材料结构特征出发,对其多功能性的实现进行了探讨;重点介绍目前絮凝-抑/灭菌双功能和絮凝-阻垢双功能天然高分子水处理剂的研发进展;同时从构效关系等角度出发,展望了多功能型天然高分子水处理剂的未来发展.
  • 加载中
  • [1] SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185):301-310.
    [2] SCHWARZENBACH R P, ESCHER B I, FENNER K, et al. The challenge of micropollutants in aquatic systems[J]. Science, 2006, 313(5790):1072-1077.
    [3] 张立珠, 赵雷. 水处理剂:配方·制备·应用[M]. 北京:化学工业出版社, 2010. ZHANG L Z, ZHAO L. Water treatment agents:Formula, Preparation and Application[M]. Beijing:Chemical Industry Press, 2010(in Chinese).
    [4] 李道荣. 水处理剂概论[M]. 北京:化学工业出版社, 2008. LI D R. An Overview of Water Treatment Chemicals[M]. Beijing:Chemical Industry Press, 2005(in Chinese).
    [5] SHARMA B R, DHULDHOYA N C, MERCHANT U C. Flocculants-an ecofriendly approach[J]. Journal of Polymers and the Environment, 2006, 14(2):195-202.
    [6] HASSON D, SHEMER H, SHER A. State of the art of friendly "green" scale control inhibitors:A review article[J]. Industrial & Engineering Chemistry Research, 2011, 50(12):7601-7607.
    [7] GOY R C, BRITTO D, ASSIS O B G. A review of the antimicrobial activity of chitosan[J]. Polímeros, 2009, 19(3):241-247.
    [8] MARTINOD A, EUVRARD M, FOISSY A, et al. Progressing the understanding of chemical inhibition of mineral scale by green inhibitors[J]. Desalination, 2008, 220(1-3):345-352.
    [9] DEREK R. Use of phosphoramides as corrosion inhibitors[P]. United States, No 3591330. 1971.
    [10] 肖锦. 多功能水处理剂[M]. 北京:化学工业出版社, 2008. XIAO J. Multifunctional agents for water treatment[M]. Beijing:Chemical Industry Press, 2008(in Chinese).
    [11] MATILAINEN A, VEPSALAINEN M, SILLABPAA M. Natural organic matter removal by coagulation during drinking water treatment:A review[J]. Adcances in Colloid and Interface Science, 2010, 159(2):189-197.
    [12] 李风亭、张善发、赵艳. 混凝剂与絮凝剂[M]. 北京:化学工业出版社, 2005. LI F T, ZHANG S F, ZHAO Y. Coagulants and Flocculants[M]. Beijing:Chemical Industry Press, 2005(in Chinese).
    [13] WU Y F, LIU W, GAO N Y, et al. A study of titanium sulfate flocculation for water treatment[J]. Water Research, 2011, 45(12):3704-3711.
    [14] BOLTO B A. Soluble polymers in water purification[J]. Progress in Polymer Science, 1995, 20(6):987-1041.
    [15] MONJE-RAMIREZ I, de Velasquez M T O. Removal and transformation of recalcitrant organic matter from stabilized saline landfill leachates by coagulation-ozonation coupling processes[J]. Water Research, 2004, 38(9):2358-2366.
    [16] BOLTO B, GREGORY J. Organic polyelectrolytes in water treatment[J]. Water Research, 2007, 41(11):2301-2324.
    [17] 汤鸿霄. 无机高分子絮凝理论与絮凝剂[M]. 北京:中国建筑工业出版社出版, 2006. TANG H X. Inorganic polymer flocculatants and flocculation theory[M]. Beijing:China Architecture & Building Press, 2006(in Chinese).
    [18] 张俐娜. 天然高分子改性材料及应用[M]. 北京:化学工业出版社, 2006. ZHANG L L. Modified material and application of natural polymers[M]. Beijing:Chemical Industry Press, 2006(in Chinese).
    [19] YANG R, LI H J, HUANG M, et al. A review on chitosan-based flocculants and their applications in water treatment[J]. Water Research, 2016, 95:59-89.
    [20] ZHOU Y, FRANKS G V. Flocculation mechanism induced by cationic polymers investigated by light scattering[J]. Langmuir, 2006, 22(16):6775-6786.
    [21] THOMAS D N, JUDD S J, FAWCETT N. Flocculation modelling:A review[J]. Water Research, 1999, 33(7):1579-1592.
    [22] LYKLEMA J. Modern trends of colloid science in chemistry and biology[M]. Switzerland:Birkhäuser Basel, 1985:55-73.
    [23] GREGORY J. Particles in water:properties and processes[M]. Florida:CRC Press, 2004.
    [24] 徐晓军. 化学絮凝剂作用原理[M]. 北京:科学出版社, 2005. XU X J. Mechanisms of chemical flocculants[M]. Beijing:Science Press, 2005(in Chinese).
    [25] DUAN J M, GREGORY J. Coagulation by hydrolysing metal salts[J]. Advances in Colloid and Interface Science, 2003, 100:475-502.
    [26] YANG Z, YUAN B, HUANG X, et al. Evaluation of the flocculation performance of carboxymethyl chitosan-graft-polyacrylamide, a novel amphoteric chemically bonded composite flocculant[J]. Water Research, 2012, 46(1):107-114.
    [27] ROUSSY J, VAN VOOREN M, DEMPSEY B A, et al. Influence of chitosan characteristics on the coagulation and the flocculation of bentonite suspensions[J]. Water Research, 2005, 39(14):3247-3258.
    [28] GREGORY J, BARANY S. Adsorption and flocculation by polymers and polymer mixtures[J]. Advances in Colloid and Interface Science, 2011, 169(1):1-12.
    [29] DEBORDE M, von GUNTEN U. Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms:A critical review[J]. Water Research, 2008, 42(1-2):13-51.
    [30] HUERTA-FONTELA M, TERESA GALCERAN M, VENTURA F. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment[J]. Water Research, 2011, 45(3):1432-1442.
    [31] JIANG J Q, LLOYD B. Progress in the development and use of ferrate (VI) salt as an oxidant and coagulant for water and wastewater treatment[J]. Water Research, 2002, 36(6):1397-1408.
    [32] PATTANAYAIYING R, H-KITTIKUN A, CUTTER C N. Effect of lauric arginate, nisin Z, and a combination against several food-related bacteria[J]. International Journal of Food Microbiology, 2014, 188:135-146.
    [33] ZHANG H, OYANEDEL-CRAVER V. Comparison of the bacterial removal performance of silver nanoparticles and a polymer based quaternary amine functiaonalized silsesquioxane coated point-of-use ceramic water filters[J]. Journal of Hazardous Materials, 2013, 260:272-277.
    [34] TRUEBA A, OTERO F M, GONZALEZ J A, et al. Study of the activity of quaternary ammonium compounds in the mitigation of biofouling in heat exchangers-condensers cooled by seawater[J]. Biofouling, 2013, 29(9):1139-1151.
    [35] FINNEGAN M, LINLEY E, DENYER S P, et al. Mode of action of hydrogen peroxide and other oxidizing agents:differences between liquid and gas forms[J]. Journal of Antimicrobial Chemotherapy, 2010, 65(10):2108-2115.
    [36] SIEDENBIEDEL F, TILLER J C. Antimicrobial polymers in solution and on surfaces:overview and functional principles[J]. Polymers, 2012, 4:46-71.
    [37] MAILLARD J Y. Bacterial target sites for biocide action[J]. Journal of Applied Microbiology, 2002, 92(s1):16S-27S.
    [38] LINLEY E, DENYER S P, MCDONNELL G, et al. Use of hydrogen peroxide as a biocide:new consideration of its mechanisms of biocidal action[J]. Journal of Antimicrobial Chemotherapy, 2012, 67(7):1589-1596.
    [39] RABEA E I, BADAWY M E T, STEVENS C V, et al. Chitosan as antimicrobial agent:applications and mode of action[J]. Biomacromolecules, 2003, 4(6):1457-1465.
    [40] KIM M-M, AU J, RAHARDIANTO A, et al. Impact of conventional water treatment coagulants on mineral scaling in RO desalting of brackish water[J]. Industrial & Engineering Chemistry Research, 2009, 48(6):3126-3135.
    [41] ANTONY A, LOW J H, GRAY S, et al. Scale formation and control in high pressure membrane water treatment systems:A review[J]. Journal of Membrane Science, 2011, 383(1-2):1-16.
    [42] LIN Y P, SINGER P C. Inhibition of calcite crystal growth by polyphosphates[J]. Water Research, 2005, 39(19):4835-4843.
    [43] AMJAD Z. The science and technology of industrial water treatment[M]. Florida:CRC Press, 2010.
    [44] BOELS L, KEESMAN K J, WITKAMP G J. Adsorption of phosphonate antiscalant from reverse osmosis membrane concentrate onto granular ferric hydroxide[J]. Environmental Science & Technology, 2012, 46(17):9638-9645.
    [45] KNEPPER T P. Synthetic chelating agents and compounds exhibiting complexing properties in the aquatic environment[J]. TrAC Trends in Analytical Chemistry, 2003, 22(10):708-724.
    [46] SHAKKTHIVEL P, VASUDEVAN T. Acrylic acid-diphenylamine sulphonic acid copolymer threshold inhibitor for sulphate and carbonate scales in cooling water systems[J]. Desalination, 2006, 197(1-3):179-189.
    [47] WANG C, LI S P, LI T D. Calcium carbonate inhibition by a phosphonate-terminated poly(maleic-co-sulfonate) polymeric inhibitor[J]. Desalination, 2009, 249(1):1-4.
    [48] 张彦河,郭茹辉,张利辉,等. 乌头酸-丙烯酸共聚物的合成及性能研究[J]. 工业水处理,2005, 25(2):48-50.

    ZHANG Y H, GUO R H, ZHANG L H, et al. Study on the synthesis and performance of aconitic acid-acrylic acid copolymer[J]. Industrial Water Treatment, 2005, 25(2):48-50(in Chinese).

    [49] WANG Y W, LI A M, YANG H. Effects of substitution degree and molecular weight of carboxymethyl starch on its scale inhibition[J]. Desalination, 2017, 408:60-69.
    [50] GUO X R, QIU F X, DONG K, et al. Scale inhibitor copolymer modified with oxidized starch:synthesis and performance on scale inhibition[J]. Polymer-Plastics Technology and Engineering, 2013, 52(3):261-267.
    [51] OUYANG X P, QIU X Q, LOU H M, et al. Corrosion and scale inhibition properties of sodium lignosulfonate and its potential application in recirculating cooling water system[J]. Industrial & Engineering Chemistry Research, 2006, 45(16):5716-5721.
    [52] GUO X R, QIU F X, DONG K, et al. Preparation, characterization and scale performance of scale inhibitor copolymer modification with chitosan[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(6):2177-2183.
    [53] DARTON E G. Membrane chemical research:Centuries apart[J]. Desalination, 2000, 132(1-3):121-131.
    [54] TANTAYAKOM V, SREETHAWONG T, FOGLER H S, et al. Scale inhibition study by turbidity measurement[J]. Journal of Colloid and Interface Science, 2005, 284(1):57-65.
    [55] REDDY M M, HOCH A R. Calcite crystal growth rate inhibition by polycarboxylic acids[J]. Journal of Colloid and Interface Science, 2001, 235(2):365-370.
    [56] LABILLE J, THOMAS F, MILAS M, et al. Flocculation of colloidal clay by bacterial polysaccharides:effect of macromolecule charge and structure[J]. Journal of Colloid and Interface Science, 2005, 284(1):149-156.
    [57] 李永峰, 黄中子, 徐菁利. 聚丙烯酰胺混凝剂的合成和混凝应用的研究[J]. 黑龙江科学, 2010, 1(3):5-11.

    LI Y F, HUANG Z Z, U J L. The synthesis of PAM flocculants and its flocculation application[J]. Heilongjiang Science, 2010, 1(3):5-11(in Chinese).

    [58] LIU X F, GUAN Y L, YANG D Z, et al. Antibacterial action of chitosan and carboxymethylated chitosan[J]. Journal of Applied Polymer Science, 2001, 79(7):1324-1335.
    [59] LIU H, DU Y M, WANG X H, et al. Chitosan kills bacteria through cell membrane damage[J]. International Journal of Food Microbiology, 2004, 95(2):147-155.
    [60] ZHENG L Y, ZHU J F. Study on antimicrobial activity of chitosan with different molecular weights[J]. Carbohydrate Polymers, 2003, 54(4):527-530.
    [61] NO H K, PARK N Y, LEE S H, et al. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights[J]. International Journal of Food Microbiology, 2002, 74(1-2):65-72.
    [62] STRAND S P, VARUM K M, ØSTGAARD K. Interactions between chitosans and bacterial suspensions:Adsorption and flocculation[J]. Colloids and Surfaces B:Biointerfaces, 2003, 27(1):71-81.
    [63] YANG Z, DEGORCE-DUMAS J R, YANG H, et al. Flocculation of escherichia coli using a quaternary ammonium salt grafted carboxymethyl chitosan flocculant[J]. Environmental Science & Technology, 2014, 48(12):6867-6873.
    [64] SONG Y B, ZHANG J, GAN W P, et al. Flocculation properties and antimicrobial activities of quaternized celluloses synthesized in NaOH/urea aqueous solution[J]. Industrial & Engineering Chemistry Research, 2009, 49(3):1242-1246.
    [65] MAZEIKA D, STRECKIS S, RADZEVICIUS K, et al. Flocculation of bacillus amyloliquefaciens h disintegrates with cationized starch and aminated hydroxyethylcellulose[J]. Journal of Dispersion Science and Technology, 2014, 36(1):146-153.
    [66] ROWETON S, HUANG S J, SWIFT G. Poly (aspartic acid):Synthesis, biodegradation, and current applications[J]. Journal of environmental polymer degradation, 1997, 5(3):175-181.
    [67] ZHANG Y, YIN H Q, ZHANG Q S, et al. Synthesis and characterization of novel polyaspartic acid/urea graft copolymer with acylamino group and its scale inhibition performance[J]. Desalination, 2016, 35:92-98.
    [68] 路长青, 汪鹰, 马迎军, 等. 磺酸共聚物的合成及阻垢分散性能的研究[J]. 工业水处理, 1995, 15(3):14-17.

    LU C Q, WANG Y, MA Y J, et al. Synthesis and scale inhibition/dispersion properties of sulfonic acid copolymer[J]. Industrial water treatment, 1995, 15(3):14-17(in Chinese).

    [69] RAHUL R, KUMAR S, JHA U, et al. Cationic inulin:A plant based natural biopolymer for algal biomass harvesting[J]. International Journal of Biological Macromolecules, 2015, 72:868-874.
    [70] BANERJEE C, GHOSH S, SEN G, et al. Study of algal biomass harvesting using cationic guar gum from the natural plant source as flocculant[J]. Carbohydrate Polymers, 2013, 92(1):675-681.
    [71] BISWAL D R, SINGH R P. Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer[J]. Carbohydrate Polymers, 2004, 57(4):379-387.
    [72] YAN L F, TAO H Y, BANGAL P R. Synthesis and flocculation behavior of cationic cellulose prepared in a NaOH/urea aqueous solution[J]. CLEAN-Soil, Air, Water, 2009, 37(1):39-44.
    [73] KURITA K. Controlled functionalization of the polysaccharide chitin[J]. Progress in Polymer Science, 2001, 26(9):1921-1971.
    [74] THARANATHAN R N. Starch-value addition by modification[J]. Critical Reviews in Food Science and Nutrition, 2005, 45(5):371-384.
    [75] HEINZE T, LIEBERT T. Unconventional methods in cellulose functionalization[J]. Progress in Polymer Science, 2001, 26(9):1689-1762.
    [76] SHOGREN R L. Flocculation of kaolin by waxy maize starch phosphates[J]. Carbohydrate Polymers, 2009, 76(4):639-644.
    [77] XIE C X, FENG Y J, CAO W P, et al. Novel biodegradable flocculating agents prepared by phosphate modification of Konjac[J]. Carbohydrate Polymers, 2007, 67(4):566-571.
    [78] HOKKANEN S, REPO E, SILLANPAA M. Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose[J]. Chemical Engineering Journal, 2013, 223:40-47.
    [79] XIAO B, SUN X F, SUN R C. The chemical modification of lignins with succinic anhydride in aqueous systems[J]. Polymer Degradation and Stability, 2001, 71(2):223-231.
    [80] FLORY P J. Principles of polymer chemistry[M]. New York:Cornell University Press, 1953.
    [81] ARAI K, CERESA R. Block and graft copolymerization[M]. Vol 1. New York:Wiley Interscience, 1973.
    [82] LEE J S, KUMAR R N, ROZMAN H D, et al. Pasting, swelling and solubility properties of UV initiated starch-graft-poly(AA)[J]. Food Chemistry, 2005, 91(2):203-211.
    [83] ZHAO L, MITOMO H, ZHAI M L, et al. Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation[J]. Carbohydrate Polymers, 2003, 53(4):439-446.
    [84] SINGH V, KUMAR P, SANGHI R. Use of microwave irradiation in the grafting modification of the polysaccharides-A review[J]. Progress in Polymer Science. 2012, 37(2):340-364.
    [85] WANG J P, CHEN Y Z, ZHANG S J, et al. A chitosan-based flocculant prepared with gamma-irradiation-induced grafting[J]. Bioresource Technology, 2008, 99(9):3397-3402.
    [86] MISHRA S, MUKUL A, SEN G, et al. Microwave assisted synthesis of polyacrylamide grafted starch (St-g-PAM) and its applicability as flocculant for water treatment[J]. International Journal of Biological Macromolecules, 2011, 48(1):106-111.
    [87] TRIPATHY J, MISHRA D K, BEHARI K. Graft copolymerization of N-vinylformamide onto sodium carboxymethylcellulose and study of its swelling, metal ion sorption and flocculation behaviour[J]. Carbohydrate Polymers, 2009, 75(4):604-611.
    [88] LⅡMATAINEN H, VISANKO M, SIRVIO J A, et al. Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation[J]. Biomacromolecules, 2012, 13(5):1592-1597.
    [89] JIANG Y X, JU B Z, ZHANG S F, et al. Preparation and application of a new cationic starch ether-Starch-methylene dimethylamine hydrochloride[J]. Carbohydrate Polymers, 2010, 80(2):467-473.
    [90] SUOPAJARVI T, LⅡMATAINEN H, HORMI O, et al. Coagulation-flocculation treatment of municipal wastewater based on anionized nanocelluloses[J]. Chemical Engineering Journal, 2013, 231:59-67.
    [91] FANG R, CHENG X S, XU X R. Synthesis of lignin-base cationic flocculant and its application in removing anionic azo-dyes from simulated wastewater[J]. Bioresource Technology, 2010, 101(19):7323-7329.
    [92] CAI T, YANG Z, LI H J, et al. Effect of hydrolysis degree of hydrolyzed polyacrylamide grafted carboxymethyl cellulose on dye removal efficiency[J]. Cellulose, 2013, 20(5):2605-2614.
    [93] SEN G, GHOSH S, JHA U, et al. Hydrolyzed polyacrylamide grafted carboxymethylstarch (Hyd. CMS-g-PAM):An efficient flocculant for the treatment of textile industry wastewater[J]. Chemical Engineering Journal, 2011, 171(2):495-501.
    [94] LIU Z Z, WEI H, LI A M, et al. Evaluation of structural effects on the flocculation performance of a co-graft starch-based flocculant[J]. Water Research, 2017, 118:160-166.
    [95] Du Q, WEI H, LI A M, et al. Evaluation of the starch-based flocculants on flocculation of hairwork wastewater[J]. Science of the Total Environment, 2017, 601-602:1628-1637.
    [96] QUINLAN P M. Silicon-containing quaternary ammonium thiazines[P]:United States, No 4418195, 1983.
    [97] GODOS D I, GUZMAN H O, SOTO R, et al. Coagulation/flocculation-based removal of algal-bacterial biomass from piggery wastewater treatment[J]. Bioresource Technology, 2011, 102(2):923-927.
    [98] ZHANG W X, SHANG Y B, YUAN B, et al. The flocculating properties of chitosan-graft-polyacrylamide flocculants (Ⅱ)-Test in pilot scale[J]. Journal of Applied Polymer Science, 2010, 117(4):2016-2024.
    [99] YANG Z, WU H, YUAN B, et al. Synthesis of amphoteric starch-based grafting flocculants for flocculation of both positively and negatively charged colloidal contaminants from water[J]. Chemical Engineering Journal, 2014, 244:209-217.
    [100] LI H J, CAI T, YUAN B, et al. Flocculation of both kaolin and hematite suspensions using the starch-based flocculants and their floc properties[J]. Industrial & Engineering Chemistry Research, 2015, 54(1):59-67.
    [101] HELANDER I M, NURMIAHO-LASSILA E-L, AHVENAINEN R, et al. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria[J]. International Journal of Food Microbiology, 2001, 71(2-3):235-244.
    [102] STRAND S P, NORDENGEN T, ØSTGAARD K. Efficiency of chitosans applied for flocculation of different bacteria[J]. Water Research, 2002, 36(19):4745-4752.
    [103] HUGHES J, RAMSDEN D K, SYMES K C. The flocculation of bacteria using cationic synthetic flocculants and chitosan[J]. Biotechnology Techniques, 1990, 4(1):55-60.
    [104] PEI H-Y, MA C-X, HU W-R, et al. The behaviors of microcystis aeruginosa cells and extracellular microcystins during chitosan flocculation and flocs storage processes[J]. Bioresource Technology, 2014, 151:314-322.
    [105] LI Y, CHEN X G, LIU N, et al. Physicochemical characterization and antibacterial property of chitosan acetates[J]. Carbohydrate Polymers, 2007, 67(2):227-232.
    [106] FERFERA-HARRAR H, AIOUAZ N, DAIRI N, et al. Preparation of chitosan-g-poly (acrylamide)/montmorillonite superabsorbent polymer composites:Studies on swelling, thermal, and antibacterial properties[J]. Journal of Applied Polymer Science, 2014, 131(1):1-14.
    [107] TANG H, ZHANG P, KIEFT T L, et al. Antibacterial action of a novel functionalized chitosan-arginine against Gram-negative bacteria[J]. Acta Biomaterialia, 2010, 6(7):2562-2571.
    [108] SAJOMSANG W, RUKTANONCHAI U R, GONIL P, et al. Quaternization of N-(3-pyridylmethyl) chitosan derivatives:Effects of the degree of quaternization, molecular weight and ratio of N-methylpyridinium and N,N,N-trimethyl ammonium moieties on bactericidal activity[J]. Carbohydrate Polymers, 2010, 82(4):1143-1152.
    [109] HUANG M, WANG Y W, CAI J, et al. Preparation of dual-function starch-based flocculants for the simultaneous removal of turbidity and inhibition of Escherichia coli in water[J]. Water Research, 2016, 98:128-137.
    [110] LIU Z Z, HUANG M, LI A M, et al. Flocculation and antimicrobial properties of a cationized starch[J]. Water Research, 2017, 119:57-66.
    [111] HUANG M, LIU Z Z, LI A M, et al. Dual functionality of a graft starch flocculant:Flocculation and antibacterial performance[J]. Journal of Environmental Management, 2017, 196, 63-71.
    [112] 蒋挺大. 壳聚糖[M]. 北京:化学工业出版社, 2007. JIANG T D. Chitosan[M]. Beijing:Chemical industry press, 2007(in Chinese).
    [113] KUMAR M N V R. A review of chitin and chitosan applications[J]. Reactive and Functional Polymers, 2000, 46(1):1-27.
    [114] DIVAKARAN R, PILLAI V N S. Flocculation of kaolinite suspensions in water by chitosan[J]. Water Research, 2001, 5(16):3904-3908.
    [115] YANG H, LU Y, CHENG R S. Handbook of chitosan research and applications:Research progress on the preparation and application of amphoteric chitosan[M]. New York:Nova Science Publishers, 2011:227-240.
    [116] RINAUDO M. Chitin and chitosan:Properties and applications[J]. Progress in Polymer Science, 2006, 31(7):603-632.
    [117] GUIBAL E, VAN VOOREN M, DEMPSEY B A, et al. A review of the use of chitosan for the removal of particulate and dissolved contaminants[J]. Separation Science and Technology, 2006, 41(11):2487-2514.
    [118] LI K, LI P, CAI J, et al. Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent[J]. Chemosphere, 2016, 154:310-318.
    [119] RENAULT F, SANCEY B, BADOT P-M, et al. Chitosan for coagulation/flocculation processes-an eco-friendly approach[J]. European Polymer Journal, 2009, 45(5):1337-1348.
    [120] CRINI G, BADOT P-M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies:A review of recent literature[J]. Progress in Polymer Science, 2008, 33(4):399-447.
    [121] LIU N, CHEN X G, PARK H J, et al. Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli[J]. Carbohydrate Polymers, 2006, 64(1):60-65.
    [122] STRAND S P, VANDVIK M S, VARUM K M, et al. Screening of chitosans and conditions for bacterial flocculation[J]. Biomacromolecules, 2001, 2(1):126-133.
    [123] WU H, YANG R, LI R H, et al. Modeling and optimization of the flocculation processes for removal of cationic and anionic dyes from water by an amphoteric grafting chitosan-based flocculant using response surface methodology[J]. Environmental Science and Pollution Research, 2015, 22(17):13038-13048.
    [124] YANG Z, LI H J, YAN H, et al. Evaluation of a novel chitosan-based flocculant with high flocculation performance, low toxicity and good floc properties[J]. Journal of Hazardous Materials, 2014, 276:480-488.
    [125] CUERO R G, DUFFUS E, OSUJI G, et al. Aflatoxin control in preharvest maize:Effects of chitosan and two microbial agents[J]. Journal of Agricultural Science. 1991, 117(2):165-169.
    [126] DONG C L, CHEN W, LIU C. Flocculation of algal cells by amphoteric chitosan-based flocculant[J]. Bioresource Technology, 2014, 170:239-247.
    [127] WANG J P, YUAN S J, WANG Y, et al. Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties[J]. Water Research, 2013, 47(8):2643-2648.
    [128] VANDAMME D, FOUBERT I, MEESSCHAERT B, et al. Flocculation of microalgae using cationic starch[J]. Journal of Applied Phycology, 2010, 22(4):525-530.
    [129] WANG L, LIANG W Y, YU J, et al. Flocculation of Microcystis aeruginosa using modified larch tannin[J]. Environmental Science & Technology, 2013, 47(11):5771-5777.
    [130] FERREIRA R S, NAPOLEAO T H, SANTOS A F S, et al. Coagulant and antibacterial activities of the water-soluble seed lectin from Moringa oleifera[J]. Letters in Applied Microbiology, 2011, 53(2):186-192.
    [131] YANG Z, YANG H, JIANG Z W, et al. Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide[J]. Journal of Hazardous Materials, 2013, 254-255:36-45.
    [132] SINGH R P, PAL S, RANA V K, et al. Amphoteric amylopectin:A novel polymeric flocculant[J]. Carbohydrate Polymers, 2013, 91(1):294-299.
    [133] PAL S, GHORAI S, DASH M K, et al. Flocculation properties of polyacrylamide grafted carboxymethyl guar gum (CMG-g-PAM) synthesised by conventional and microwave assisted method[J]. Journal of Hazardous Materials, 2011, 192(3):1580-1588.
    [134] GAMAGE A, SHAHIDI F. Use of chitosan for the removal of metal ion contaminants and proteins from water[J]. Food Chemistry, 2007, 104(3):989-996.
    [135] ZHANG H X, SUN D X, ZHU Y C, et al. Preparation of carboxymethyl-quaternized oligochitosan and its scale inhibition and antibacterial activity[J]. Journal of Water Reuse and Desalination, 2014, 4(2):65-75.
    [136] DEMADIS K D, KETSETZI A, PACHIS K, et al. Inhibitory effects of multicomponent, phosphonate-grafted, zwitterionic chitosan biomacromolecules on silicic acid condensation[J]. Biomacromolecules, 2008, 9(11):3288-3293.
    [137] CHAUHAN K, KUMAR R, KUMAR M, et al. Modified pectin-based polymers as green antiscalants for calcium sulfate scale inhibition[J]. Desalination, 2012, 305:31-37.
    [138] ZHANG H X, WANG F, JIN X H, et al. A botanical polysaccharide extracted from abandoned corn stalks:Modification and evaluation of its scale inhibition and dispersion performance[J]. Desalination, 2013, 326:55-61.
    [139] LAKSHTANOV L Z, BOVET N, STIPP S L S. Inhibition of calcite growth by alginate[J]. Geochimica et Cosmochimica Acta, 2011, 75(14):3945-3955.
    [140] BUTLER M F, GLASER N, WEAVER A C, et al. Calcium carbonate crystallization in the presence of biopolymers[J]. Crystal Growth & Design, 2006, 6(3):781-794.
    [141] VERRAEST D L, PETERS J A, VAN BEKKUM H, et al. Carboxymethyl inulin:A new inhibitor for calcium carbonate precipitation[J]. Journal of the American Oil Chemists' Society, 1996, 73(1):55-62.
    [142] DEMADIS K D, STATHOULOPOULOU A. Multifunctional, environmentally friendly additives for control of inorganic foulants in industrial water and process applications[J]. Materials Performance, 2006, 45(1):40-44.
    [143] KETSETZI A, STATHOULOPOULOU A, DEMADIS K D. Being "green" in chemical water treatment technologies:issues, challenges and developments[J]. Desalination, 2008, 223(1/3):487-493.
    [144] MIKSIC B A, FURMAN A, KHARSHAN M. Vapor corrosion and scale inhibitors formulated from biodegradable and renewable raw materials[C]. 10th European Symposium on Corrosion and Scale Inhibitors, 2005.
    [145] FATOMBI J K. Flocculation of kaolinite suspensions in water by coconut cream casein[J]. Journal of Water Resource and Protection, 2011, 3(12):918-924.
    [146] SEKI H, SUZUKI A, SHINGUH M, et al. Flocculation of diatomite by methylated milk casein in seawater[J]. Journal of Colloid and Interface Science, 2004, 270(2):359-363.
    [147] SINHA S, MISHRA S, SEN G. Microwave initiated synthesis of polyacrylamide grafted casein (CAS-g-PAM)——its application as a flocculant[J]. International Journal of Biological Macromolecules, 2013, 60:141-147.
    [148] QIANG X H, SHENG Z H, ZHANG H. Study on scale inhibition performances and interaction mechanism of modified collagen[J]. Desalination, 2013, 309:237-242.
    [149] BANERJEE S, LE T. Scale inhibition and removal in continuous pulp digesters[J]. Industrial & Engineering Chemistry Research, 2012, 51(30):10283-10286.
    [150] BRATSKAYA S, SCHWARZ S, LAUBE J, et al. Effect of polyelectrolyte structural features on flocculation behavior:Cationic polysaccharides vs. synthetic polycations[J]. Macromolecular Materials and Engineering, 2005, 290(8):778-785.
    [151] QIAN J W, XIANG X J, YANG W Y, et al. Flocculation performance of different polyacrylamide and the relation between optimal dose and critical concentration[J]. European Polymer Journal, 2004, 40(8):1699-1704.
    [152] CAI Z C, DAI J, YANG H, et al.Study on the interfacial properties of viscous capillary flow of dilute acetic acid solutions of chitosan[J]. Carbohydrate Polymers, 2009, 78(3):488-491.
    [153] ZHONG D, HUANG X, YANG H, et al. New insights into viscosity abnormalities of sodium alginate aqueous solutions[J]. Carbohydrate Polymers, 2010, 81(4):948-952.
    [154] YANG H, ZHENG Q, CHENG R S. New Insight into "Polyelectrolyte Effect"[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2012, 407:1-8.
  • 加载中
计量
  • 文章访问数:  1500
  • HTML全文浏览数:  1474
  • PDF下载数:  219
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-09-13
  • 刊出日期:  2018-06-15
余伟, 黄牧, 李爱民, 杨琥. 多功能型天然高分子水处理剂的研究[J]. 环境化学, 2018, 37(6): 1293-1310. doi: 10.7524/j.issn.0254-6108.2017091302
引用本文: 余伟, 黄牧, 李爱民, 杨琥. 多功能型天然高分子水处理剂的研究[J]. 环境化学, 2018, 37(6): 1293-1310. doi: 10.7524/j.issn.0254-6108.2017091302
YU Wei, HUANG Mu, LI Aimin, YANG Hu. Multi-functional natural polymer based water treatment agents[J]. Environmental Chemistry, 2018, 37(6): 1293-1310. doi: 10.7524/j.issn.0254-6108.2017091302
Citation: YU Wei, HUANG Mu, LI Aimin, YANG Hu. Multi-functional natural polymer based water treatment agents[J]. Environmental Chemistry, 2018, 37(6): 1293-1310. doi: 10.7524/j.issn.0254-6108.2017091302

多功能型天然高分子水处理剂的研究

  • 1. 南京大学环境学院, 污染控制与资源化研究国家重点实验室, 南京, 210023
基金项目:

国家自然科学基金(51778279)资助.

摘要: 化学药剂一直以来在水处理领域里发挥着重要作用,主要有混凝剂/絮凝剂、杀菌剂、阻垢剂等.传统的水处理剂往往功能较为单一,存在种类繁多、投加量大、设备复杂、操作繁琐等诸多问题.且不同的药剂之间还有可能互相抑制,降低水处理效率.因此,研发兼具混凝/絮凝、抑/灭菌、阻垢等多功能水处理剂已得到人们的广泛关注.近年来,天然高分子水处理剂由于其绿色环保等特点而备受瞩目,因此研发多功能型天然高分子水处理剂具有重要的科学和现实意义.然而,到目前为止,天然高分子水处理剂的开发与应用还十分有限,作用机制也很不清楚,均有待进一步的深入研究.本文首先依次介绍了混凝剂/絮凝剂、杀菌剂与阻垢剂,并从其作用机理与材料结构特征出发,对其多功能性的实现进行了探讨;重点介绍目前絮凝-抑/灭菌双功能和絮凝-阻垢双功能天然高分子水处理剂的研发进展;同时从构效关系等角度出发,展望了多功能型天然高分子水处理剂的未来发展.

English Abstract

参考文献 (154)

返回顶部

目录

/

返回文章
返回