生物炭对水溶液中肉桂酸的吸附机制研究
Sorption mechanism of cinnamic acid to biochars in aqueous solution
-
摘要: 研究了不同温度(300—900℃)制备的杉木生物炭对水相中肉桂酸的吸附.所有温度下,生物炭对肉桂酸的吸附等温线都呈非线性关系,并以表面吸附为主.高比表面积是800—900℃生物炭吸附量较大的主要因素.为探明生物炭的化学组成对肉桂酸吸附的影响,将吸附量进行了比表面积标化分析,结果表明,300℃生物炭的高含量异质性原子和800—900℃生物炭表面高含量灰分占用了生物炭的吸附点位,导致它们对肉桂酸的标化吸附量明显小于400—700℃生物炭.此外,低pH抑制了600℃生物炭-水溶液中肉桂酸的解离,减少了生物炭表面—OH与解离肉桂酸之间以氢键结合的吸附量,导致400—700℃生物炭中600℃生物炭的标化吸附量最低.研究明确了生物炭的不同性质对肉桂酸吸附的影响及机制,为选择合适的生物炭作为土壤添加剂来降低肉桂酸化感作用提供了科学依据.Abstract: Sorption of cinnamic acid in aqueous solution to fir wood-derived biochars produced at different temperatures (300-900℃) was investigated in this study. The sorption isotherms of cinnamic acid to biochars were all nonlinear, and the sorption mechanism was dominated by the surface adsorption. Higher specific surface area (SA) is the main reason of the maximum sorption capacity for the biochars produced at high temperature of 800℃ and 900℃. In order to clarify the effect of chemical compositions of biochars on the sorption capacity for cinnamic acid, the SA normalized sorption capacity was analyzed. The results showed that biochars produced at 300℃ and 800-900℃ contained the highest content of surface heterogeneous atoms and surface ash, respectively, which occupied the adsorption sites of biochars and resulted in lower surface area normalized adsorption capacity of biochars produced at 300℃ and 800-900℃ in comparison with the biochars produced at 400℃-700℃. Low pH suppressed the dissociation of cinnamic acid from 600℃ biochar, which inhibited the formation of hydrogen-bond between the phenolic hydroxyl of biochar and the dissociated cinnamic acid, and reduced the sorption amount of cinnamic acid. Thus the normalized adsorption capacity was lowest for the biochar produced at 600℃ among the biochars produced at 400℃-700℃. This study has clarified the sorption mechanisms of cinnamic acid to biochars with different properties, providing a theoretical basis for choosing suitable biochar as a soil additive to decrease the allelopathic effect of cinnamic acid.
-
Key words:
- pyrolysis temperature /
- biochar /
- cinnamic acid /
- sorption /
- normalized sorption capacity
-
[1] HAN L, RO K S, SUN K, et al. New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants[J]. Environmental Science & Technology, 2016, 50(24):13274-13282. [2] JIE J, KE S, WU F, et al. Single-solute and bi-solute sorption of phenanthrene and dibutyl phthalate by plant-and manure-derived biochars[J]. Science of the Total Environment, 2014, 473-474(3):308-316. [3] HOSSAIN M K, STREZOV V, CHAN K Y, et al. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J]. Journal of Environmental Management, 2011, 92(1):223-228. [4] YANG Y, SHENG G. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns[J]. Environmental Science & Technology, 2003, 37(16):3635-3639. [5] RENNER R. Rethinking biochar[J]. Environmental Science & Technology, 2007, 41(17):5932-5933. [6] LEHMANN J, GAUNT J, RONDON M. Bio-char sequestration in terrestrial ecosystems-a review[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2):395-419. [7] CHEN B, ZHOU D, ZHU L. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science & Technology, 2008, 42(14):5137-5143. [8] 周尊隆, 吴文玲, 李阳, 等. 3种多环芳烃在木炭上的吸附/解吸行为[J]. 农业环境科学学报, 2008, 27(2):813-819. ZHOU Z L, WU W L, LI Y, et al. Sorption and desorption behaviors of three PAHs by charcoals[J]. Journal of Agro-Environment Science, 2008, 27(2):813-819(in Chinese).
[9] 王宁, 侯艳伟, 彭静静,等. 生物炭吸附有机污染物的研究进展[J]. 环境化学, 2012, 31(3):287-295. WANG N, HOU Y, PENG J J, et al. Recharch progess on sorption of organic contaminants to biochar[J]. Environmental Chemistry, 2012, 31(3):287-295(in Chinese).
[10] MOHANTY P, NANDA S, PANT K K, et al. Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood:effects of heating rate[J]. Journal of Analytical & Applied Pyrolysis, 2013, 104(1):485-493. [11] GNIAZDOWSKA A, BOGATEK R. Allelopathic interactions between plants. Multi site action of allelochemicals[J]. Acta Physiologiae Plantarum, 2005, 27(3):395-407. [12] WU F, WANG X, XUE C. Effect of cinnamic acid on soil microbial characteristics in the cucumber rhizosphere[J]. European Journal of Soil Biology, 2009, 45(4):356-362. [13] 吕可, 潘开文, 王进闯,等. 花椒叶浸提液对土壤微生物数量和土壤酶活性的影响[J]. 应用生态学报, 2006, 17(9):1649-1654. LV K, PAN K, WANG J, et al. Effects of Zanthoxylum bungeanum leaf extract on soil microbe quantity and enzyme activities[J]. Chinese Journal of Applied Ecology, 2006, 17(9):1649-1654(in Chinese).
[14] LI S, XU C, WANG J, et al. Cinnamic, myristic and fumaric acids in tobacco root exudates induce the infection of plants by Ralstonia solanacearum[J]. Plant & Soil, 2016, 412:381-395. [15] 陈绍莉, 周宝利, 王茹华, 等. 嫁接对茄子根系分泌物中肉桂酸和香草醛的调节效应[J]. 应用生态学报, 2008, 19(11):2394-2399. CHEN S L, ZHOU B L, WANG R H, et al. Regulation effects of grafting on cinnamic acid and vanillin in eggplant root exudates[J]. Chinese Journal of Applied Ecology, 2008, 19(11):2394-2399(in Chinese).
[16] BAZIRAMAKENGA R, LEROUX G D, SIMARD R R. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots[J]. Journal of Chemical Ecology, 1995, 21(9):1271-1285. [17] 董艳, 董坤, 杨智仙, 等. 肉桂酸对蚕豆枯萎病发生的影响及间作缓解机制[J]. 土壤学报, 2017, 54(2):503-515. DONG Y, DONG K, YANG Z X, et al. Effect of cinnamic acid on incidence of faba bean fusarium wilt and incidence-mitigating mechanisms of wheat and faba bean intercropping[J]. Acta Pedologica Sinica, 2017, 52(7):503-515(in Chinese).
[18] 李亮亮, 李天来, 臧健, 等. 生物碳对加入外源肉桂酸土壤酶活性、微生物结构及土壤养分的影响[J]. 华北农学报, 2013, 28(3):210-216. LI L L, LI T L, ZANG J,, et al. The effect of biochar on soil enzyme activity, microbial community structure and soil nutrient content in the soil amended with cinnamic acid[J], Acta Agriculturae Boreali-Sinica, 2013. 28(3):210-216(in Chinese).
[19] NI J, PIGNATELLO J J, XING B. Adsorption of aromatic carboxylate ions to black carbon (biochar) is accompanied by proton exchange with water[J]. Environmental Science & Technology, 2011, 45(21):9240-9248. [20] LATTAO C, CAO X, MAO J, et al. Influence of molecular structure and adsorbent properties on sorption of organic compounds to a temperature series of wood chars[J]. Environmental Science & Technology, 2014, 48(9):4790-4798. [21] UCHIMIYA M, WARTELLE L H, BODDU V M. Sorption of triazine and organophosphorus pesticides on soil and biochar[J]. J Agricultural and Food Chemistry, 2012, 60(60):2989-2997. [22] CHUN Y, SHENG G, CHIOU C T, et al. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science & Technology, 2004, 38(17):4649-4655. [23] ZHANG G, ZHANG Q, SUN K, et al. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures[J]. Environmental Pollution, 2011, 159(10):2594-2601. [24] RAJAPAKSHA A U, VITHANAGE M, AHMAD M, et al. Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar[J]. Journal of Hazardous Materials, 2015, 290:43-50. [25] PENG X, YE L L, WANG C H, et al. Temperature-and duration-dependent rice straw-derived biochar:Characteristics and its effects on soil properties of an Ultisol in southern China[J]. Soil & Tillage Research, 2011, 112(2):159-166. [26] KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4):1247-1253. [27] QIU Y P, CHENG H Y, XU C, et al. Surface characteristics of crop-residue-derived black carbon and lead(Ⅱ) adsorption[J]. Water Resources Research, 2008, 42(3):567-574. [28] SCHMIDT M W I, NOACK A G. Black carbon in soils and sediments:Analysis, distribution, implications, and current challenges[J]. Global Biogeochemical Cycles, 2000, 14(3):777-793. [29] AND J J P, XING B. Mechanisms of slow sorption of organic chemicals to natural particles docx[J]. Environmental Science & Technology, 1996, 30(1):1-11. [30] 王萌萌,周启星. 生物炭的土壤环境效应及其机制研究[J]. 环境化学, 2013, 32(5):768-780. WANG M, ZHOU Q. Environmental effects and their mechanisms of biochar applied to soils[J]. Environmental Chemistry, 2013, 32(5):768-780(in Chinese).
[31] HUANG W, CHEN B. Interaction mechanisms of organic contaminants with burned straw ash charcoal[J]. Journal of Environmental Sciences, 2010, 22(10):1586-1594. [32] A'LVAREZ-MERINO M A, FONTECHA-CAMARA M A, LOPEZ-RAMON M V,et al. Temperature dependence of the point of zero charge of oxidized and non-oxidized activated carbons[J]. Carbon, 2008, 46(5):778-787.
计量
- 文章访问数: 1109
- HTML全文浏览数: 1071
- PDF下载数: 172
- 施引文献: 0