基于CeO2/TiO2催化H2O2氧化低温脱硝的实验研究

王琦, 陆强, 仇志超, 傅玉, 唐诗洁, 董长青, 杨勇平. 基于CeO2/TiO2催化H2O2氧化低温脱硝的实验研究[J]. 环境化学, 2018, 37(6): 1253-1263. doi: 10.7524/j.issn.0254-6108.2017090402
引用本文: 王琦, 陆强, 仇志超, 傅玉, 唐诗洁, 董长青, 杨勇平. 基于CeO2/TiO2催化H2O2氧化低温脱硝的实验研究[J]. 环境化学, 2018, 37(6): 1253-1263. doi: 10.7524/j.issn.0254-6108.2017090402
WANG Qi, LU Qiang, QIU Zhichao, FU Yu, TANG Shijie, DONG Changqing, YANG Yongping. Low temperature H2O2 oxidized denitration catalyzed by CeO2/TiO2 catalyst[J]. Environmental Chemistry, 2018, 37(6): 1253-1263. doi: 10.7524/j.issn.0254-6108.2017090402
Citation: WANG Qi, LU Qiang, QIU Zhichao, FU Yu, TANG Shijie, DONG Changqing, YANG Yongping. Low temperature H2O2 oxidized denitration catalyzed by CeO2/TiO2 catalyst[J]. Environmental Chemistry, 2018, 37(6): 1253-1263. doi: 10.7524/j.issn.0254-6108.2017090402

基于CeO2/TiO2催化H2O2氧化低温脱硝的实验研究

  • 基金项目:

    国家973项目(2015CB251501),北京市科技新星(Z171100001117064)和中央高校基本科研业务专项资金(2016YQ05,2015ZZD02)资助.

Low temperature H2O2 oxidized denitration catalyzed by CeO2/TiO2 catalyst

  • Fund Project: Supported by the National Basic Research Program of China(2015CB251501), Beijing Nova Program (Z171100001117064) and the Fundamental Research Funds for the Central Universities of China(2016YQ05, 2015ZZD02).
  • 摘要: 以H2O2为氧化剂对NO进行低温氧化脱硝,考察了非催化和纳米TiO2催化作用下的H2O2氧化低温脱硝性能;并以纳米TiO2为载体,采用等体积浸渍法掺杂过渡金属氧化物CeO2进行改性,制备了一系列CeO2/TiO2催化剂,探究了其催化作用下H2O2的氧化脱硝性能,并筛选获得了催化剂的最佳CeO2负载量;进一步针对最优催化剂,考察了不同烟气工况对催化剂活性的影响,并进行了XRD、H2-TPR以及XPS等表征分析.表征结果显示,CeO2的负载量会影响催化剂中晶格氧的含量,晶格氧相对含量的增加有利于氧化还原反应中的电子传递,这是促进H2O2活化分解的关键.实验结果表明,CeO2/TiO2催化剂能有效促进H2O2的活化分解实现低温脱硝,且CeO2负载量为3% wt时,催化活性最高;在烟温为160℃、[H2O2]/[NO]物质的量比为2以及空速为30000 h-1时,NO转化率最高可达76%.
  • 加载中
  • [1] 朱孝强,黄亚继,沈凯,等.ZrO2掺杂的V2O5/TiO2催化剂表征及催化还原NOx[J].环境化学,2012,31(4):443-449.

    ZHU X Q, HUANG Y J, SHEN K, et al. Characteritarion of ZrO2-doped V2O5/TiO2 catalyst and its catalytic reduction of NOx by NH3[J]. Environmental Chemistry, 2012,31(4):443-449(in Chinese).

    [2] 马双忱,金鑫,孙云雪,等.SCR烟气脱硝过程硫酸氢铵的生成机理与控制[J].热力发电,2010,39(8):12-17.

    MA S C, JIN X, SUN Y X, et al. The formation mechanism of ammonium bisulfate in SCR flue gas denitration process and control thereof[J]. Thermal power generation, 2010, 39(8):12-17(in Chinese).

    [3] 杨加强,梅毅,王驰,等.湿法烟气脱硝技术现状及发展[J].化工进展,2017,36(2):695-704.

    YANG J Q, MEI Y, WANG C, et al. Current status and trends on wet flue gas denitration technology[J]. Chemical industry and Engineering process, 2017, 36(2):695-704(in Chinese).

    [4] 白敏菂,冷宏,张启岳,等.高级氧化技术研究现状及其发展趋势[J].科技导报,2011,29(35):74-79.

    BAI M D, LENG H, ZHANG Q Y, et al. Application, experimentation, and development tendency of advanced oxidation processes[J]. Science &Technology Review, 2011, 29(35):74-79(in Chinese).

    [5] COLLINS J G.. Polit scale study for control of industrial boiler nitrogen oxide emissions using hydrogen peroxide treatment coupled with wet scrubbing-system design[D]. America:University of Central Florida, 1999.
    [6] MICHELLE M C, Cooper C D, Dietz J D, et al. Pilot-scale evaluation of H2O2 injection to control NOx emissions[J]. Journal of Environmental Engineering. 2001. 127(4):329-336.
    [7] COOPER C D, CHRISTIAN A C, LUCAS P, et al. Investigation of ultraviolet light-enhanced H2O2 oxidation of NOx emissions[J].Journal of Environmental Engineering. 2002, 128(1):68-72.
    [8] HAYWOOD J M, COOPER C D. The economic feasibility of using hydrogen peroxide for the enhanced oxidation and removal of nitrogen oxides from coal-fired power plant flue gases[J]. Journal of the Air & Waste Management Association, 1998, 48(3):238-246.
    [9] DING J, ZHONG Q, ZHANG S L, et al. Simultaneous removal of NOx and SO2 from coal-fired fue gas by catalytic oxidation-removal process with H2O2[J].Chemical Engineering Journal, 2014, 243(5):176-182.
    [10] HUANG X M, DING J, ZHONG Q. Catalutic decomposition of H2O2 over Fe-based catalysts for simultaneousremoval of NOx and SO2[J].Applied Surface Science, 2015, 326:66-72.
    [11] DING J, ZHONG Q, ZHANG S L, et al. Size-and shape-controlled synthesis and catalytic performance of iron-aluminum mixed oxide nanoparticles for NOx and SO2 removal with hydrogen peroxide[J]. Journal of Hazardous Materials, 2015, 283:633-642.
    [12] DING J, ZHONG Q, ZHANG S L. Catalytic efficiency of iron oxides in decomposition of H2O2 for simultaneous NOx and SO2 removal effect of calcination temperature[J]. Journal of Molecular Catalysis A Chemical, 2014, 393(18):222-231.
    [13] HIROKI A, LAVERNE J A. Decomposition of hydrogen peroxide at water-ceramic oxide interfaces[J]. Journal of Physical Chemistry B, 2005, 109(8):3364-3370.
    [14] LOUSADA C M, JONSSON M. Kinetics, mechanism, and activation energy of H2O2 decomposition on the surface of ZrO2[J]. Journal of Physical Chemistry C, 2010, 114(25):11202-11208.
    [15] HAO R L, ZHAO Y. Macrokinetics of NO oxidation by vaporized H2O2 association with ultraviolet light[J]. Energy & Fuels, 2016, 30(3):1328-1338.
    [16] 岳林海,水淼,徐铸德,等.稀土掺杂二氧化钛的相变和光催化活性[J].浙江大学学报理学版,2000,27(1):69-74.

    YUE L H, SHUI M, XU Z D, et al. The A-R transformation and photocatalytic acticities of mixed TiO2 rare earth oxides[J]. Journal of Zhejiang University, 2000, 27(1):69-74(in Chinese).

    [17] XU W Q, YU Y B, ZHANG C B, et al. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst[J]. Catalysis Communication, 2008, 9(6):1453-1457.
    [18] YANG M, MATS J. Surface reactivity of hydroxyl radicals formed upon catalytic decomposition of H2O2 on ZrO2[J]. Journal of Molecular Catalysis A Chemical, 2015, 400:49-55.
    [19] ZAMANSKY V M, LOC H, PETER M M, et al. Oxidation of NO to NO2 by hydrogen peroxide and its mixtures with methanol in naturalgas and coal combustion gases[J]. Combustion Science and Technology, 1996, 120(1-6):255-272.
    [20] BAI M D, ZHANG Z T, Bai M D. Simultaneous desulfurization and denitration of flue gas by OH radicals produced from O2+ and water vapor in a duct.[J]. Environmental Science & Technology, 2012, 46(18):10161-10168.
    [21] YANG M, JONSSON M. Evaluation of the O2 and pH effects on probes for surface bound hydroxyl radicals[J]. Journal of Physical Chemistry C, 2014, 118(15):7971-7979.
    [22] ZHU H, QIN Z, SHAN W, et al. Pd/CeO2 -TiO2 catalyst for CO oxidation at low temperature:a TPR study with H2 and CO as reducing agents[J]. Journal of Catalysis, 2004, 225(2):267-277.
    [23] HE H, DAIH X, AU C T. Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE=Ce, Pr) solid solutions[J]. Catalysis Today, 2004, 90(3-4):245-254.
    [24] LARSSON P O, ANDERSSON A. Complete oxidation of CO, ethanol, and ethyl acetate over copper oxide supported on Titania and Ceria modified Titania[J]. Journal of Catalysis, 1998, 179(1):72-89.
    [25] SUTTHIUMPORN K, KAWI S. Promotional effect of alkaline earth over Ni-La2O3, catalyst for CO2, reforming of CH4:Role of surface oxygen species on H2, production and carbon suppression[J]. International Journal of Hydrogen Energy, 2011, 36(22):14435-14446.
    [26] LEE Y N, LAGO R M, FIERRO J L G, et al. Hydrogen peroxide decomposition over Ln1-XAXMnO3, (Ln=La or Nd and A=K or Sr) perovskites[J]. Applied Catalysis A:General, 2001, 215(1-2):245-256.
    [27] MIN K, PARK E D, JI M K, et al. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Applied Catalysis A:General, 2007, 327(2):261-269.
    [28] JARRIGE J, VERVISCH P. Plasma-enhanced catalysis of propane and isopropyl alcohol at ambient temperature on a MnO2 -based catalyst[J]. Applied Catalysis B:Environmental, 2009, 90(1-2):74-82.
    [29] 叶苗苗, 陈忠林, 沈吉敏,等. 臭氧提高纳米TiO2光催化活性的ESR分析[J]. 影像科学与光化学, 2008, 26(6):460-467.

    YE M M, CHENG Z L, SHEN J M, et al. ESR analysis of the photocatalytic activity of ozone increasing nano-TiO2[J]. Imaging Science and Photochemistry, 2008, 26(6):460-467(in Chinese).

  • 加载中
计量
  • 文章访问数:  1385
  • HTML全文浏览数:  1362
  • PDF下载数:  399
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-09-04
  • 刊出日期:  2018-06-15
王琦, 陆强, 仇志超, 傅玉, 唐诗洁, 董长青, 杨勇平. 基于CeO2/TiO2催化H2O2氧化低温脱硝的实验研究[J]. 环境化学, 2018, 37(6): 1253-1263. doi: 10.7524/j.issn.0254-6108.2017090402
引用本文: 王琦, 陆强, 仇志超, 傅玉, 唐诗洁, 董长青, 杨勇平. 基于CeO2/TiO2催化H2O2氧化低温脱硝的实验研究[J]. 环境化学, 2018, 37(6): 1253-1263. doi: 10.7524/j.issn.0254-6108.2017090402
WANG Qi, LU Qiang, QIU Zhichao, FU Yu, TANG Shijie, DONG Changqing, YANG Yongping. Low temperature H2O2 oxidized denitration catalyzed by CeO2/TiO2 catalyst[J]. Environmental Chemistry, 2018, 37(6): 1253-1263. doi: 10.7524/j.issn.0254-6108.2017090402
Citation: WANG Qi, LU Qiang, QIU Zhichao, FU Yu, TANG Shijie, DONG Changqing, YANG Yongping. Low temperature H2O2 oxidized denitration catalyzed by CeO2/TiO2 catalyst[J]. Environmental Chemistry, 2018, 37(6): 1253-1263. doi: 10.7524/j.issn.0254-6108.2017090402

基于CeO2/TiO2催化H2O2氧化低温脱硝的实验研究

  • 1. 华北电力大学生物质发电成套设备国家工程实验室, 北京, 102206
基金项目:

国家973项目(2015CB251501),北京市科技新星(Z171100001117064)和中央高校基本科研业务专项资金(2016YQ05,2015ZZD02)资助.

摘要: 以H2O2为氧化剂对NO进行低温氧化脱硝,考察了非催化和纳米TiO2催化作用下的H2O2氧化低温脱硝性能;并以纳米TiO2为载体,采用等体积浸渍法掺杂过渡金属氧化物CeO2进行改性,制备了一系列CeO2/TiO2催化剂,探究了其催化作用下H2O2的氧化脱硝性能,并筛选获得了催化剂的最佳CeO2负载量;进一步针对最优催化剂,考察了不同烟气工况对催化剂活性的影响,并进行了XRD、H2-TPR以及XPS等表征分析.表征结果显示,CeO2的负载量会影响催化剂中晶格氧的含量,晶格氧相对含量的增加有利于氧化还原反应中的电子传递,这是促进H2O2活化分解的关键.实验结果表明,CeO2/TiO2催化剂能有效促进H2O2的活化分解实现低温脱硝,且CeO2负载量为3% wt时,催化活性最高;在烟温为160℃、[H2O2]/[NO]物质的量比为2以及空速为30000 h-1时,NO转化率最高可达76%.

English Abstract

参考文献 (29)

返回顶部

目录

/

返回文章
返回