基于CeO2/TiO2催化H2O2氧化低温脱硝的实验研究
Low temperature H2O2 oxidized denitration catalyzed by CeO2/TiO2 catalyst
-
摘要: 以H2O2为氧化剂对NO进行低温氧化脱硝,考察了非催化和纳米TiO2催化作用下的H2O2氧化低温脱硝性能;并以纳米TiO2为载体,采用等体积浸渍法掺杂过渡金属氧化物CeO2进行改性,制备了一系列CeO2/TiO2催化剂,探究了其催化作用下H2O2的氧化脱硝性能,并筛选获得了催化剂的最佳CeO2负载量;进一步针对最优催化剂,考察了不同烟气工况对催化剂活性的影响,并进行了XRD、H2-TPR以及XPS等表征分析.表征结果显示,CeO2的负载量会影响催化剂中晶格氧的含量,晶格氧相对含量的增加有利于氧化还原反应中的电子传递,这是促进H2O2活化分解的关键.实验结果表明,CeO2/TiO2催化剂能有效促进H2O2的活化分解实现低温脱硝,且CeO2负载量为3% wt时,催化活性最高;在烟温为160℃、[H2O2]/[NO]物质的量比为2以及空速为30000 h-1时,NO转化率最高可达76%.Abstract: H2O2 was employed as an oxidant for the low temperature oxidative denitration. Experiments were conducted to determine the denitration properties of H2O2 in non-catalyzed and nano TiO2-catalyzed processes. In addition, a series of CeO2/TiO2 catalysts were prepared by incipient wet impregnation method, with CeO2 as the active component and nano TiO2 as the carrier. H2O2-based oxidative denitration experiments were performed to determine the optimal CeO2 loading on the catalyst. Based on the optimal CeO2/TiO2 catalyst, the influence of flue gas conditions on catalyst activity was investigated. The characterization analyses of XRD, H2-TPR and XPS showed that the increase of CeO2 loading was favorable for the formation of lattice oxygen, which was beneficial for the electron transfer in the redox reactions. Therefore, increase of lattice oxygen was the key to promote the decomposition of H2O2. The experimental results indicated that the CeO2/TiO2 catalyst could effectively promote the activation and decomposition of H2O2 for low temperature denitration. The best catalytic performance was obtained at the CeO2 loading of 3% wt. Under the flue gas temperature of 160℃,[H2O2]/[NO] molar ratio of 2 and space velocity of 30000 h-1, the NO conversion the reached as high as 76%.
-
Key words:
- H2O2 /
- NO oxidation /
- nano TiO2 /
- CeO2 /
- low temperature denitration
-
-
[1] 朱孝强,黄亚继,沈凯,等.ZrO2掺杂的V2O5/TiO2催化剂表征及催化还原NOx[J].环境化学,2012,31(4):443-449. ZHU X Q, HUANG Y J, SHEN K, et al. Characteritarion of ZrO2-doped V2O5/TiO2 catalyst and its catalytic reduction of NOx by NH3[J]. Environmental Chemistry, 2012,31(4):443-449(in Chinese).
[2] 马双忱,金鑫,孙云雪,等.SCR烟气脱硝过程硫酸氢铵的生成机理与控制[J].热力发电,2010,39(8):12-17. MA S C, JIN X, SUN Y X, et al. The formation mechanism of ammonium bisulfate in SCR flue gas denitration process and control thereof[J]. Thermal power generation, 2010, 39(8):12-17(in Chinese).
[3] 杨加强,梅毅,王驰,等.湿法烟气脱硝技术现状及发展[J].化工进展,2017,36(2):695-704. YANG J Q, MEI Y, WANG C, et al. Current status and trends on wet flue gas denitration technology[J]. Chemical industry and Engineering process, 2017, 36(2):695-704(in Chinese).
[4] 白敏菂,冷宏,张启岳,等.高级氧化技术研究现状及其发展趋势[J].科技导报,2011,29(35):74-79. BAI M D, LENG H, ZHANG Q Y, et al. Application, experimentation, and development tendency of advanced oxidation processes[J]. Science &Technology Review, 2011, 29(35):74-79(in Chinese).
[5] COLLINS J G.. Polit scale study for control of industrial boiler nitrogen oxide emissions using hydrogen peroxide treatment coupled with wet scrubbing-system design[D]. America:University of Central Florida, 1999. [6] MICHELLE M C, Cooper C D, Dietz J D, et al. Pilot-scale evaluation of H2O2 injection to control NOx emissions[J]. Journal of Environmental Engineering. 2001. 127(4):329-336. [7] COOPER C D, CHRISTIAN A C, LUCAS P, et al. Investigation of ultraviolet light-enhanced H2O2 oxidation of NOx emissions[J].Journal of Environmental Engineering. 2002, 128(1):68-72. [8] HAYWOOD J M, COOPER C D. The economic feasibility of using hydrogen peroxide for the enhanced oxidation and removal of nitrogen oxides from coal-fired power plant flue gases[J]. Journal of the Air & Waste Management Association, 1998, 48(3):238-246. [9] DING J, ZHONG Q, ZHANG S L, et al. Simultaneous removal of NOx and SO2 from coal-fired fue gas by catalytic oxidation-removal process with H2O2[J].Chemical Engineering Journal, 2014, 243(5):176-182. [10] HUANG X M, DING J, ZHONG Q. Catalutic decomposition of H2O2 over Fe-based catalysts for simultaneousremoval of NOx and SO2[J].Applied Surface Science, 2015, 326:66-72. [11] DING J, ZHONG Q, ZHANG S L, et al. Size-and shape-controlled synthesis and catalytic performance of iron-aluminum mixed oxide nanoparticles for NOx and SO2 removal with hydrogen peroxide[J]. Journal of Hazardous Materials, 2015, 283:633-642. [12] DING J, ZHONG Q, ZHANG S L. Catalytic efficiency of iron oxides in decomposition of H2O2 for simultaneous NOx and SO2 removal effect of calcination temperature[J]. Journal of Molecular Catalysis A Chemical, 2014, 393(18):222-231. [13] HIROKI A, LAVERNE J A. Decomposition of hydrogen peroxide at water-ceramic oxide interfaces[J]. Journal of Physical Chemistry B, 2005, 109(8):3364-3370. [14] LOUSADA C M, JONSSON M. Kinetics, mechanism, and activation energy of H2O2 decomposition on the surface of ZrO2[J]. Journal of Physical Chemistry C, 2010, 114(25):11202-11208. [15] HAO R L, ZHAO Y. Macrokinetics of NO oxidation by vaporized H2O2 association with ultraviolet light[J]. Energy & Fuels, 2016, 30(3):1328-1338. [16] 岳林海,水淼,徐铸德,等.稀土掺杂二氧化钛的相变和光催化活性[J].浙江大学学报理学版,2000,27(1):69-74. YUE L H, SHUI M, XU Z D, et al. The A-R transformation and photocatalytic acticities of mixed TiO2 rare earth oxides[J]. Journal of Zhejiang University, 2000, 27(1):69-74(in Chinese).
[17] XU W Q, YU Y B, ZHANG C B, et al. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst[J]. Catalysis Communication, 2008, 9(6):1453-1457. [18] YANG M, MATS J. Surface reactivity of hydroxyl radicals formed upon catalytic decomposition of H2O2 on ZrO2[J]. Journal of Molecular Catalysis A Chemical, 2015, 400:49-55. [19] ZAMANSKY V M, LOC H, PETER M M, et al. Oxidation of NO to NO2 by hydrogen peroxide and its mixtures with methanol in naturalgas and coal combustion gases[J]. Combustion Science and Technology, 1996, 120(1-6):255-272. [20] BAI M D, ZHANG Z T, Bai M D. Simultaneous desulfurization and denitration of flue gas by OH radicals produced from O2+ and water vapor in a duct.[J]. Environmental Science & Technology, 2012, 46(18):10161-10168. [21] YANG M, JONSSON M. Evaluation of the O2 and pH effects on probes for surface bound hydroxyl radicals[J]. Journal of Physical Chemistry C, 2014, 118(15):7971-7979. [22] ZHU H, QIN Z, SHAN W, et al. Pd/CeO2 -TiO2 catalyst for CO oxidation at low temperature:a TPR study with H2 and CO as reducing agents[J]. Journal of Catalysis, 2004, 225(2):267-277. [23] HE H, DAIH X, AU C T. Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE=Ce, Pr) solid solutions[J]. Catalysis Today, 2004, 90(3-4):245-254. [24] LARSSON P O, ANDERSSON A. Complete oxidation of CO, ethanol, and ethyl acetate over copper oxide supported on Titania and Ceria modified Titania[J]. Journal of Catalysis, 1998, 179(1):72-89. [25] SUTTHIUMPORN K, KAWI S. Promotional effect of alkaline earth over Ni-La2O3, catalyst for CO2, reforming of CH4:Role of surface oxygen species on H2, production and carbon suppression[J]. International Journal of Hydrogen Energy, 2011, 36(22):14435-14446. [26] LEE Y N, LAGO R M, FIERRO J L G, et al. Hydrogen peroxide decomposition over Ln1-XAXMnO3, (Ln=La or Nd and A=K or Sr) perovskites[J]. Applied Catalysis A:General, 2001, 215(1-2):245-256. [27] MIN K, PARK E D, JI M K, et al. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Applied Catalysis A:General, 2007, 327(2):261-269. [28] JARRIGE J, VERVISCH P. Plasma-enhanced catalysis of propane and isopropyl alcohol at ambient temperature on a MnO2 -based catalyst[J]. Applied Catalysis B:Environmental, 2009, 90(1-2):74-82. [29] 叶苗苗, 陈忠林, 沈吉敏,等. 臭氧提高纳米TiO2光催化活性的ESR分析[J]. 影像科学与光化学, 2008, 26(6):460-467. YE M M, CHENG Z L, SHEN J M, et al. ESR analysis of the photocatalytic activity of ozone increasing nano-TiO2[J]. Imaging Science and Photochemistry, 2008, 26(6):460-467(in Chinese).
-

计量
- 文章访问数: 1385
- HTML全文浏览数: 1362
- PDF下载数: 399
- 施引文献: 0