螺旋霉素在水溶液中的光降解

常海莎, 闫豫君, 鲁建江, 刘子龙, 周珂艺, 叶邦策. 螺旋霉素在水溶液中的光降解[J]. 环境化学, 2018, 37(6): 1343-1350. doi: 10.7524/j.issn.0254-6108.2017091703
引用本文: 常海莎, 闫豫君, 鲁建江, 刘子龙, 周珂艺, 叶邦策. 螺旋霉素在水溶液中的光降解[J]. 环境化学, 2018, 37(6): 1343-1350. doi: 10.7524/j.issn.0254-6108.2017091703
CHANG Haisha, YAN Yujun, LU Jianjiang, LIU Zilong, ZHOU Keyi, YE Bangce. Photodegradation of spiramycin in aqueous solution[J]. Environmental Chemistry, 2018, 37(6): 1343-1350. doi: 10.7524/j.issn.0254-6108.2017091703
Citation: CHANG Haisha, YAN Yujun, LU Jianjiang, LIU Zilong, ZHOU Keyi, YE Bangce. Photodegradation of spiramycin in aqueous solution[J]. Environmental Chemistry, 2018, 37(6): 1343-1350. doi: 10.7524/j.issn.0254-6108.2017091703

螺旋霉素在水溶液中的光降解

  • 基金项目:

    国家自然科学基金(21767024)资助.

Photodegradation of spiramycin in aqueous solution

  • Fund Project: Supported by the National Natural Science Foundation of China(21767024).
  • 摘要: 螺旋霉素(Spiramycin,SPI)是一种广泛存在于水体中的新兴有机污染物.在表层水体,光降解是其主要的降解方式.本实验研究了高压汞灯(250W)、氙灯(1000W)和太阳光照射下SPI在超纯水和天然湖水中的光降解过程,探讨了SPI在水溶液中的光降解动力学及环境因素对其光降解的影响.结果表明,SPI在高压汞灯照射下降解最快,其次是氙灯,太阳光照射下降解最慢,均符合准一级反应动力学.高压汞灯照射下,SPI在纯水中的光降解速率小于天然湖水中,在纯水中SPI发生了直接光降解和自敏化光降解,并以直接光降解为主.SPI的光降解速率常数(k)与其初始浓度(C0)呈负相关;随水体pH增大k增大;NO3-对SPI光降解具有促进作用,NO3-浓度升高降解速率增大;而HA、NO2-对其光降解具有抑制作用,HA、NO2-浓度升高抑制率增加.
  • 加载中
  • [1] CHEN K, ZHOU J L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China[J]. Chemosphere, 2014, 95:604-612.
    [2] BATT A L, SNOW D D, AGA D S. Occurrence of sulfonamide antimicrobials in private water well in Ishington County, Idaho, USA[J]. Chemosphere, 2006, 64(11):1963-1971.
    [3] BURKE V, RICHTER D, GRESKOWIAK J, et al. Occurrence of antibiotics in surface and groundwater of a drinking water Catchment Area in Germany[J]. Water Environment Research, 2016, 88(7):652-659.
    [4] 章强, 辛琦, 朱静敏, 等. 中国主要水域抗生素污染现状及其生态环境效应研究进展[J]. 环境化学, 2014, 33(7):1075-1083.

    ZHANG Q, XIN Q, ZHU J M, et al. The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts[J]. Environmental Chemistry, 2014, 33(7):1075-1083(in Chinese).

    [5] ROBERTS M C. Acquired tetracycline and/or macrolide-lincosamides-streptogramin resistance in anaerobes[J]. Anaerobe, 2003, 9:63-69.
    [6] 梁惜梅, 施震, 黄小平. 珠江口典型水产养殖区抗生素的污染特征[J]. 生态环境学报, 2013, 22(2):304-310.

    LIANG X M, SHI Z, HUANG X P. Occurrence of antibiotics in typical aquaculture of the Pearl River Estuary[J]. Ecology and Environmental Sciences, 2013, 22(2):304-310(in Chinese).

    [7] 高立红, 史亚利, 厉文辉, 等.抗生素环境行为及其环境效应研究进展[J]. 环境化学, 2013, 32(9):1619-1633.

    GAO L H, SHI Y L, LI W H, et al. Environmental behavior and impacts of antibiotics[J]. Environmental Chemistry, 2013, 32(9):1619-1633(in Chinese).

    [8] LI W, SHI Y, GAO L, et al. Occurrence, distribution and potential affecting factors of antibiotics in sewage sludge of wastewater treatment plants in China[J]. Science of the Total Environment, 2013, s 445-446(5):306-313.
    [9] MICHAEL I, RIZZO L, MCARDELL C S, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment:a review[J]. Water Research, 2013, 47(3):957-995.
    [10] PENG X, ZHANG K, TANG C, et al. Distribution pattern, behavior, and fate of antibacterials in urban aquatic environments in South China[J]. Journal of Environmental Monitoring Jem, 2011, 13(2):446-454.
    [11] ZUCCATO E, CASTIGLIONI S, BAGNATI R, et al. Source, occurrence and fate of antibiotics in the Italian aquatic environment[J]. Journal of Hazardous Materials, 2010, 179(1-3):1042-1048.
    [12] LEI X N, LU J J, LIU Z L, et al. Concentration and distribution of antibioticin water-sediment system of Bosten Lake, Xinjiang[J]. Environmental Science and Pollution Research, 2015, 22(3):1670-1678.
    [13] 葛林科, 任红蕾, 鲁建江, 等. 我国环境中新兴污染物抗生素及其抗性基因的分布特征[J]. 环境化学, 2015, 34(5):875-883.

    GE L K, REN H L, LU J J, et al. Occurrence of antibiotics and corresponding resitance genes in the environment of China[J]. Environmental Chemistry, 2015, 34(5):875-883(in Chinese).

    [14] LI C, LU J J, LIU J, et al. Exploring the correlations between antibiotics and ARGS in the wastewater treatment plants of hospitals in Xinjiang, China[J]. Environmental Science and Pollution Research, 2016, 23(15):15111-15121.
    [15] 秦丽婷, 童蕾, 刘慧, 等. 环境中磺胺类抗生素的生物降解及其抗性基因污染现状[J]. 环境化学, 2016, 35(5):875-883.

    QIN L T, TONG L, LIU H, et al. Biodegradation of sulfonamides and the pollution characteristics of sulfonamide resistance genes in the environment[J]. Environmental Chemistry, 2016, 35(5):875-883(in Chinese).

    [16] CHEN C E, ZHANG H, YING G G, et al. Evidence and recommendations to support the use of a novel passive water sampler to quantify antibiotics in wastewaters[J]. Environmental Science &Technology, 2013, 47:13587-13593.
    [17] HVISTENDAHL M. China takes aim at rampant antibiotic resistance[J]. Science, 2012, 336(6083):795.
    [18] ZHANG R, TANG J, LI J, et al. Occurrence and risks of antibiotics in the coastal aquatic environment of the Yellow Sea, North China[J]. Science of the Total Environment, 2013, 450-451(2):197-204.
    [19] 罗玉, 黄斌, 金玉,等.污水中抗生素的处理方法研究进展[J]. 化工进展, 2014, 33(9):2471-2477.

    LUO Y, HUANG B, JIN Y, et al. Research progress in the degradation of antibiotics wastewater treatment[J]. Chemical Industry and Engineering Progress, 2014, 33(9):2471-2477(in Chinese).

    [20] ADAMEK E, BARAN W, SOBCZAK A. Photocatalytic degradation of veterinary antibiotics:Biodegradability and antimicrobial activity of intermediates[J]. Process Safety and Environmental Protection, 2016, 103:1-9.
    [21] LI J, ZHENG X Q, SUN S J, et al. Effect of tetracycline on the growth and nutrient removal capacity of chlamydomonas reinhardtii in simulated effluent from wastewater treatment plants[J]. Bioresource Technology, 2016, 218:1163-1169.
    [22] LI Y J, QIAO X L, ZHANG Y N, et al. Effects of halide ions on photodegradation of sulfonamide antibiotics:Formation of halogenated intermediates[J]. Water Research, 2016, 102:405-412.
    [23] BABIĆ S, PERIŠA M, ŠKORIĆ I. Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media[J]. Chemosphere, 2013, 91:1635-1642.
    [24] VAIANO V, SACCO O, SANNINO D, et al. Photocatalytic removal of spiramycin from wastewater under visible light with N-doped TiO2 photocatalysts[J]. Chemical Engineering Journal, 2015, 261:3-8.
    [25] 黄春年, 李学德, 花日茂. 磺胺二甲嘧啶在水溶液中的光化学降解[J]. 环境污染与防治, 2011, 33(12):59-64.

    HUANG C N, LI X D, HUA R M. Photochemical degradation of sulfamethazine in aqueous solution[J]. Environmental Pollution & Control, 2011, 33(12):59-64(in Chinese).

    [26] 邵萌, 杨桂朋, 张洪海. 水体系中氧氟沙星的光化学降解研究[J]. 环境科学, 2012, 33(2):476-480.

    SHAO M, YANG G P, ZHANG H H. Photochemical degradation of ofloxacin in aqueous solution[J]. Environmental Science, 2012, 33(2):476-480(in Chinese).

    [27] 陈伟, 陈晓旸, 于海瀛. 磺胺二甲嘧啶在水溶液中的光化学降解[J]. 农业环境科学学报, 2016, 35(2):346-352.

    CHEN W, CHEN X Y, YU H Y. Photochemical degradation of sulfamethazine in aqueous solution[J]. Journal of Agro-Environment Science, 2016, 35(2):346-352(in Chinese).

    [28] 张楠, 刘国光, 刘海津, 等. 双氯芬酸在水环境中光降解的初步研究[J]. 环境化学, 2013,22(1):42-47.

    ZHANG N, LIU G G, LIU H J, et al. Photodegradation mechanism of diclofenac in aqueous environment[J]. Environmental Chemistry, 2013,22(1):42-47(in Chinese).

    [29] 彭娜, 王开峰, 刘国光, 等. 模拟日光照射下水环境中普萘洛尔的光化学行为[J]. 环境化学, 2016, 35(1):112-117.

    PENG N, WANG K F, LIU G G, et al. Photodegradation of propranolol in aqueous environment under simulated sunlight[J]. Environmental Chemistry, 2016, 35(1):112-117(in Chinese).

    [30] 葛林科, 张思玉, 谢晴, 等. 抗生素在水环境中的光化学行为[J]. 中国科学:化学, 2010, 40(2):124-135.

    GE L K, ZHANG S Y, XIE Q, et al. Photochemical behavior of antibiotics in water environment[J]. Chinese Science:Chemistry, 2010, 40(2):124-135(in Chinese).

    [31] 尉小旋, 陈景文, 王如冰, 等. 氧氟沙星和诺氟沙星的水环境光化学转化:pH值及溶解性物质的影响[J]. 环境化学, 2015, 34(3):448-454.

    WEI X X, CHEN J W, WANG R B, et al. Aquatic photochemical transformation of ofloxacin and norfloxacin:Effects of pH and water constituents[J]. Environmental Chemistry,2015, 34(3):448-454(in Chinese).

    [32] 张倩, 杨琛, 莫德清, 等. 水溶液性质对泰乐菌素光降解的影响[J]. 农业环境科学学报, 2014, 33(12):2444-2449.

    ZHANG Q, YANG C, MO D Q, et al. Effects of aqueous solution properties on tylosin photolysis[J]. Journal of Agro-Environment Science, 2014, 33(12):2444-2449(in Chinese).

    [33] 张翠, 胡学锋, 骆永明. 模拟太阳光下水中土霉素的光化学降解[J]. 环境化学, 2016, 35(3):430-438.

    ZHANG C, HU X F, LUO Y M. Aqueous photodegradation of oxytetracycline under simulated sunlight irradiation[J]. Environmental Chemistry, 2016, 35(3):430-438(in Chinese).

    [34] NIU X Z, BUSETTI F, LANGSA M, et al. Roles of singlet oxygen and dissolved organic matter in self-sensitized photo-oxidation of antibiotic norfloxacin under sunlight irradiation[J]. Water Research, 2016, 106:214-222.
    [35] 葛林科, 陈景文, 张思玉,等. 水中氟喹诺酮类抗生素加替沙星的光降解[J]. 科学通报, 2010, 55(11):996-1001.

    GE L K, CHENG J W, ZHANG S Y, et al. Photodegradation of fluoroquinolone antibiotic gatifloxacin in aqueous solutions[J]. Chinese Science Bulletin, 2010, 55(11):996-1001(in Chinese).

    [36] GE L K, CHEN J W, QIAO X L, et al. Light-source-dependent effects of main water constituents on photodegradation of phenicol antibiotics:Mechanism and kinetics[J]. Environmental Science & Technology, 2009, 43:3101-3107
    [37] 徐秀娟, 吕宝玲, 许婷婷, 等. UV/H2O2氧化降解克拉霉素的反应动力学及影响因素[J]. 环境科学学报, 2017, 37(9):3419-3426.

    XU X J, LV B L, XU T T, et al. Degradation of clarithromycin by UV/H2O2 process:reaction kinetics and impact factors[J]. Acta Scientiae Circumstantiae, 2017, 37(9):3419-3426(in Chinese).

    [38] 肖华花, 刘国光, 陈智明, 等. 水体中不同形态氮对兽药磺胺二甲基嘧啶溶液光降解的影响[J]. 环境化学, 2015, 34(5):971-976.

    XIAO H H, LIU G G, CHEN Z M, et al. The effect of different nitrogen forms on the photo-degradation of sulfamethazine in water[J]. Environmental Chemistry, 2015, 34(5):971-976(in Chinese).

    [39] 王珍, 姚琨, 王枫亮, 等. 水体中不同形态氮对阿昔洛韦光解的影响[J]. 环境化学, 2017, 36(2):214-220.

    WANG Z, YAO K, WANG F L, et al. Photodegradation of acyclovir in aquatic environment:Effect of different forms of nitrogen[J]. Environmental Chemistry, 2017, 36(2):214-220(in Chinese).

  • 加载中
计量
  • 文章访问数:  1519
  • HTML全文浏览数:  1496
  • PDF下载数:  159
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-09-17
  • 刊出日期:  2018-06-15
常海莎, 闫豫君, 鲁建江, 刘子龙, 周珂艺, 叶邦策. 螺旋霉素在水溶液中的光降解[J]. 环境化学, 2018, 37(6): 1343-1350. doi: 10.7524/j.issn.0254-6108.2017091703
引用本文: 常海莎, 闫豫君, 鲁建江, 刘子龙, 周珂艺, 叶邦策. 螺旋霉素在水溶液中的光降解[J]. 环境化学, 2018, 37(6): 1343-1350. doi: 10.7524/j.issn.0254-6108.2017091703
CHANG Haisha, YAN Yujun, LU Jianjiang, LIU Zilong, ZHOU Keyi, YE Bangce. Photodegradation of spiramycin in aqueous solution[J]. Environmental Chemistry, 2018, 37(6): 1343-1350. doi: 10.7524/j.issn.0254-6108.2017091703
Citation: CHANG Haisha, YAN Yujun, LU Jianjiang, LIU Zilong, ZHOU Keyi, YE Bangce. Photodegradation of spiramycin in aqueous solution[J]. Environmental Chemistry, 2018, 37(6): 1343-1350. doi: 10.7524/j.issn.0254-6108.2017091703

螺旋霉素在水溶液中的光降解

  • 1. 石河子大学化学化工学院/新疆兵团化工绿色过程重点实验室, 石河子, 832003
基金项目:

国家自然科学基金(21767024)资助.

摘要: 螺旋霉素(Spiramycin,SPI)是一种广泛存在于水体中的新兴有机污染物.在表层水体,光降解是其主要的降解方式.本实验研究了高压汞灯(250W)、氙灯(1000W)和太阳光照射下SPI在超纯水和天然湖水中的光降解过程,探讨了SPI在水溶液中的光降解动力学及环境因素对其光降解的影响.结果表明,SPI在高压汞灯照射下降解最快,其次是氙灯,太阳光照射下降解最慢,均符合准一级反应动力学.高压汞灯照射下,SPI在纯水中的光降解速率小于天然湖水中,在纯水中SPI发生了直接光降解和自敏化光降解,并以直接光降解为主.SPI的光降解速率常数(k)与其初始浓度(C0)呈负相关;随水体pH增大k增大;NO3-对SPI光降解具有促进作用,NO3-浓度升高降解速率增大;而HA、NO2-对其光降解具有抑制作用,HA、NO2-浓度升高抑制率增加.

English Abstract

参考文献 (39)

返回顶部

目录

/

返回文章
返回