螺旋霉素在水溶液中的光降解
Photodegradation of spiramycin in aqueous solution
-
摘要: 螺旋霉素(Spiramycin,SPI)是一种广泛存在于水体中的新兴有机污染物.在表层水体,光降解是其主要的降解方式.本实验研究了高压汞灯(250W)、氙灯(1000W)和太阳光照射下SPI在超纯水和天然湖水中的光降解过程,探讨了SPI在水溶液中的光降解动力学及环境因素对其光降解的影响.结果表明,SPI在高压汞灯照射下降解最快,其次是氙灯,太阳光照射下降解最慢,均符合准一级反应动力学.高压汞灯照射下,SPI在纯水中的光降解速率小于天然湖水中,在纯水中SPI发生了直接光降解和自敏化光降解,并以直接光降解为主.SPI的光降解速率常数(k)与其初始浓度(C0)呈负相关;随水体pH增大k增大;NO3-对SPI光降解具有促进作用,NO3-浓度升高降解速率增大;而HA、NO2-对其光降解具有抑制作用,HA、NO2-浓度升高抑制率增加.Abstract: Spiramycin (SPI) is widely present in water environment as an emerging organic contaminant. In surface waters, photodegradation represents an important degradation pathway for SPI. The photodegradation of SPI was investigated in pure water and natural lake water exposed to high-pressure mercury lamp (250W), xenon lamp(1000W) and sunlight.The photodegradation kinetics of SPI and the effect of environmental factors on its photolysis in aqueous solution were investigated. According to the results, the degradation of SPI was observed at the fastest rate under high-pressure mercury lamp radiation, followed by xenon lamp and then natural sunlight according to the pseudo-first-order kinetics. The photolytic rate of SPI in pure water exposed to the high-pressure mercury lamp was lower than that in natural lake water. SPI experienced direct photolysis and self-sensitized photolysis in pure water, and direct photolysis rate was much greater than the rate of self-sensitized photolysis. The present results indicated that the photolytic rate constant (k) of SPI was negatively correlated with initial concentration(C0). With the increase of solution pH, the k increased. NO3- accelerated the photolysis,and the increased concentration of NO3- led to rise of the SPI photolysis rate. The presence of HA and NO2- inhibited the photolysis of SPI, and the inhibitory effects became more obvious with the rise of concentrations of HA and NO2.
-
Key words:
- emerging organic contaminant /
- antibiotic /
- spiramycin(SPI) /
- photodegradation /
- influencing factors
-
-
[1] CHEN K, ZHOU J L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China[J]. Chemosphere, 2014, 95:604-612. [2] BATT A L, SNOW D D, AGA D S. Occurrence of sulfonamide antimicrobials in private water well in Ishington County, Idaho, USA[J]. Chemosphere, 2006, 64(11):1963-1971. [3] BURKE V, RICHTER D, GRESKOWIAK J, et al. Occurrence of antibiotics in surface and groundwater of a drinking water Catchment Area in Germany[J]. Water Environment Research, 2016, 88(7):652-659. [4] 章强, 辛琦, 朱静敏, 等. 中国主要水域抗生素污染现状及其生态环境效应研究进展[J]. 环境化学, 2014, 33(7):1075-1083. ZHANG Q, XIN Q, ZHU J M, et al. The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts[J]. Environmental Chemistry, 2014, 33(7):1075-1083(in Chinese).
[5] ROBERTS M C. Acquired tetracycline and/or macrolide-lincosamides-streptogramin resistance in anaerobes[J]. Anaerobe, 2003, 9:63-69. [6] 梁惜梅, 施震, 黄小平. 珠江口典型水产养殖区抗生素的污染特征[J]. 生态环境学报, 2013, 22(2):304-310. LIANG X M, SHI Z, HUANG X P. Occurrence of antibiotics in typical aquaculture of the Pearl River Estuary[J]. Ecology and Environmental Sciences, 2013, 22(2):304-310(in Chinese).
[7] 高立红, 史亚利, 厉文辉, 等.抗生素环境行为及其环境效应研究进展[J]. 环境化学, 2013, 32(9):1619-1633. GAO L H, SHI Y L, LI W H, et al. Environmental behavior and impacts of antibiotics[J]. Environmental Chemistry, 2013, 32(9):1619-1633(in Chinese).
[8] LI W, SHI Y, GAO L, et al. Occurrence, distribution and potential affecting factors of antibiotics in sewage sludge of wastewater treatment plants in China[J]. Science of the Total Environment, 2013, s 445-446(5):306-313. [9] MICHAEL I, RIZZO L, MCARDELL C S, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment:a review[J]. Water Research, 2013, 47(3):957-995. [10] PENG X, ZHANG K, TANG C, et al. Distribution pattern, behavior, and fate of antibacterials in urban aquatic environments in South China[J]. Journal of Environmental Monitoring Jem, 2011, 13(2):446-454. [11] ZUCCATO E, CASTIGLIONI S, BAGNATI R, et al. Source, occurrence and fate of antibiotics in the Italian aquatic environment[J]. Journal of Hazardous Materials, 2010, 179(1-3):1042-1048. [12] LEI X N, LU J J, LIU Z L, et al. Concentration and distribution of antibioticin water-sediment system of Bosten Lake, Xinjiang[J]. Environmental Science and Pollution Research, 2015, 22(3):1670-1678. [13] 葛林科, 任红蕾, 鲁建江, 等. 我国环境中新兴污染物抗生素及其抗性基因的分布特征[J]. 环境化学, 2015, 34(5):875-883. GE L K, REN H L, LU J J, et al. Occurrence of antibiotics and corresponding resitance genes in the environment of China[J]. Environmental Chemistry, 2015, 34(5):875-883(in Chinese).
[14] LI C, LU J J, LIU J, et al. Exploring the correlations between antibiotics and ARGS in the wastewater treatment plants of hospitals in Xinjiang, China[J]. Environmental Science and Pollution Research, 2016, 23(15):15111-15121. [15] 秦丽婷, 童蕾, 刘慧, 等. 环境中磺胺类抗生素的生物降解及其抗性基因污染现状[J]. 环境化学, 2016, 35(5):875-883. QIN L T, TONG L, LIU H, et al. Biodegradation of sulfonamides and the pollution characteristics of sulfonamide resistance genes in the environment[J]. Environmental Chemistry, 2016, 35(5):875-883(in Chinese).
[16] CHEN C E, ZHANG H, YING G G, et al. Evidence and recommendations to support the use of a novel passive water sampler to quantify antibiotics in wastewaters[J]. Environmental Science &Technology, 2013, 47:13587-13593. [17] HVISTENDAHL M. China takes aim at rampant antibiotic resistance[J]. Science, 2012, 336(6083):795. [18] ZHANG R, TANG J, LI J, et al. Occurrence and risks of antibiotics in the coastal aquatic environment of the Yellow Sea, North China[J]. Science of the Total Environment, 2013, 450-451(2):197-204. [19] 罗玉, 黄斌, 金玉,等.污水中抗生素的处理方法研究进展[J]. 化工进展, 2014, 33(9):2471-2477. LUO Y, HUANG B, JIN Y, et al. Research progress in the degradation of antibiotics wastewater treatment[J]. Chemical Industry and Engineering Progress, 2014, 33(9):2471-2477(in Chinese).
[20] ADAMEK E, BARAN W, SOBCZAK A. Photocatalytic degradation of veterinary antibiotics:Biodegradability and antimicrobial activity of intermediates[J]. Process Safety and Environmental Protection, 2016, 103:1-9. [21] LI J, ZHENG X Q, SUN S J, et al. Effect of tetracycline on the growth and nutrient removal capacity of chlamydomonas reinhardtii in simulated effluent from wastewater treatment plants[J]. Bioresource Technology, 2016, 218:1163-1169. [22] LI Y J, QIAO X L, ZHANG Y N, et al. Effects of halide ions on photodegradation of sulfonamide antibiotics:Formation of halogenated intermediates[J]. Water Research, 2016, 102:405-412. [23] BABIĆ S, PERIŠA M, ŠKORIĆ I. Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media[J]. Chemosphere, 2013, 91:1635-1642. [24] VAIANO V, SACCO O, SANNINO D, et al. Photocatalytic removal of spiramycin from wastewater under visible light with N-doped TiO2 photocatalysts[J]. Chemical Engineering Journal, 2015, 261:3-8. [25] 黄春年, 李学德, 花日茂. 磺胺二甲嘧啶在水溶液中的光化学降解[J]. 环境污染与防治, 2011, 33(12):59-64. HUANG C N, LI X D, HUA R M. Photochemical degradation of sulfamethazine in aqueous solution[J]. Environmental Pollution & Control, 2011, 33(12):59-64(in Chinese).
[26] 邵萌, 杨桂朋, 张洪海. 水体系中氧氟沙星的光化学降解研究[J]. 环境科学, 2012, 33(2):476-480. SHAO M, YANG G P, ZHANG H H. Photochemical degradation of ofloxacin in aqueous solution[J]. Environmental Science, 2012, 33(2):476-480(in Chinese).
[27] 陈伟, 陈晓旸, 于海瀛. 磺胺二甲嘧啶在水溶液中的光化学降解[J]. 农业环境科学学报, 2016, 35(2):346-352. CHEN W, CHEN X Y, YU H Y. Photochemical degradation of sulfamethazine in aqueous solution[J]. Journal of Agro-Environment Science, 2016, 35(2):346-352(in Chinese).
[28] 张楠, 刘国光, 刘海津, 等. 双氯芬酸在水环境中光降解的初步研究[J]. 环境化学, 2013,22(1):42-47. ZHANG N, LIU G G, LIU H J, et al. Photodegradation mechanism of diclofenac in aqueous environment[J]. Environmental Chemistry, 2013,22(1):42-47(in Chinese).
[29] 彭娜, 王开峰, 刘国光, 等. 模拟日光照射下水环境中普萘洛尔的光化学行为[J]. 环境化学, 2016, 35(1):112-117. PENG N, WANG K F, LIU G G, et al. Photodegradation of propranolol in aqueous environment under simulated sunlight[J]. Environmental Chemistry, 2016, 35(1):112-117(in Chinese).
[30] 葛林科, 张思玉, 谢晴, 等. 抗生素在水环境中的光化学行为[J]. 中国科学:化学, 2010, 40(2):124-135. GE L K, ZHANG S Y, XIE Q, et al. Photochemical behavior of antibiotics in water environment[J]. Chinese Science:Chemistry, 2010, 40(2):124-135(in Chinese).
[31] 尉小旋, 陈景文, 王如冰, 等. 氧氟沙星和诺氟沙星的水环境光化学转化:pH值及溶解性物质的影响[J]. 环境化学, 2015, 34(3):448-454. WEI X X, CHEN J W, WANG R B, et al. Aquatic photochemical transformation of ofloxacin and norfloxacin:Effects of pH and water constituents[J]. Environmental Chemistry,2015, 34(3):448-454(in Chinese).
[32] 张倩, 杨琛, 莫德清, 等. 水溶液性质对泰乐菌素光降解的影响[J]. 农业环境科学学报, 2014, 33(12):2444-2449. ZHANG Q, YANG C, MO D Q, et al. Effects of aqueous solution properties on tylosin photolysis[J]. Journal of Agro-Environment Science, 2014, 33(12):2444-2449(in Chinese).
[33] 张翠, 胡学锋, 骆永明. 模拟太阳光下水中土霉素的光化学降解[J]. 环境化学, 2016, 35(3):430-438. ZHANG C, HU X F, LUO Y M. Aqueous photodegradation of oxytetracycline under simulated sunlight irradiation[J]. Environmental Chemistry, 2016, 35(3):430-438(in Chinese).
[34] NIU X Z, BUSETTI F, LANGSA M, et al. Roles of singlet oxygen and dissolved organic matter in self-sensitized photo-oxidation of antibiotic norfloxacin under sunlight irradiation[J]. Water Research, 2016, 106:214-222. [35] 葛林科, 陈景文, 张思玉,等. 水中氟喹诺酮类抗生素加替沙星的光降解[J]. 科学通报, 2010, 55(11):996-1001. GE L K, CHENG J W, ZHANG S Y, et al. Photodegradation of fluoroquinolone antibiotic gatifloxacin in aqueous solutions[J]. Chinese Science Bulletin, 2010, 55(11):996-1001(in Chinese).
[36] GE L K, CHEN J W, QIAO X L, et al. Light-source-dependent effects of main water constituents on photodegradation of phenicol antibiotics:Mechanism and kinetics[J]. Environmental Science & Technology, 2009, 43:3101-3107 [37] 徐秀娟, 吕宝玲, 许婷婷, 等. UV/H2O2氧化降解克拉霉素的反应动力学及影响因素[J]. 环境科学学报, 2017, 37(9):3419-3426. XU X J, LV B L, XU T T, et al. Degradation of clarithromycin by UV/H2O2 process:reaction kinetics and impact factors[J]. Acta Scientiae Circumstantiae, 2017, 37(9):3419-3426(in Chinese).
[38] 肖华花, 刘国光, 陈智明, 等. 水体中不同形态氮对兽药磺胺二甲基嘧啶溶液光降解的影响[J]. 环境化学, 2015, 34(5):971-976. XIAO H H, LIU G G, CHEN Z M, et al. The effect of different nitrogen forms on the photo-degradation of sulfamethazine in water[J]. Environmental Chemistry, 2015, 34(5):971-976(in Chinese).
[39] 王珍, 姚琨, 王枫亮, 等. 水体中不同形态氮对阿昔洛韦光解的影响[J]. 环境化学, 2017, 36(2):214-220. WANG Z, YAO K, WANG F L, et al. Photodegradation of acyclovir in aquatic environment:Effect of different forms of nitrogen[J]. Environmental Chemistry, 2017, 36(2):214-220(in Chinese).
-

计量
- 文章访问数: 1519
- HTML全文浏览数: 1496
- PDF下载数: 159
- 施引文献: 0