叶菌唑的光解和土壤降解特性
Photolysis and soil degradation of metconazole
-
摘要: 为明确叶菌唑的环境降解规律,采用室内模拟实验方法,研究了叶菌唑在不同条件下的光解和土壤降解特性.结果表明,在紫外灯照射下,不同pH时,叶菌唑在中性条件下的光解速率最快;环境物质二价铁离子、三价铁离子、硝酸根离子和亚硝酸根离子对叶菌唑的光解均具有抑制作用.叶菌唑在3种不同土壤中的降解顺序为南京黄棕壤 > 东北黑土 > 江西红壤,降解半衰期分别为35.9、51.7、60.3 d,属于中等降解农药;土壤含水量(20%-60%)越高,叶菌唑降解速率越快,当土壤含水量为饱和含水量的80%时,微生物生长将受到抑制,降解速率减慢;土壤中微生物和有机质能加快叶菌唑的降解,在微生物和有机质存在的条件下叶菌唑降解速率分别提高1.1倍和2.3倍.研究结果可为叶菌唑的合理使用和环境安全性评价提供科学依据.Abstract: In order to understand the environmental degradation of metconazole, photolytic and soil degradation of metconazole under different conditions were investigated by the indoor simulation method. The results showed that the photolytic rate of metconazole was the fastest under neutral conditions. Environmental matters such as ferric ions, ferrous ions, nitrate and nitrite inhibited the degradation of metconazole. The degradation rate of metconazole in three types of soils followed the order of Nanjing yellow-brown soil > Northeast black soil > Jiangxi red soil, and their degradation half lives were 35.9, 51.7 and 60.3 days respectively, which indicated metconazole belongs to medium degradation pesticides. The degradation rate of metconazole accelerated with the increase of soil moistrue (20%-60%), but decreased when the moistrue reached 80% of the saturation content due to the inhibition of microbical growth. The organic matters and microorganisms of the promoted the degradation of metconazole. The degradation rates of metconazole were improved by 1.1 and 2.3 times in the presence of microorganisms and organic matter. The results provided a scientific basis for rational use and environmental safety assessment of metconazole.
-
Key words:
- metconazole /
- photolysis /
- soil degradation
-
-
[1] DOLL T E, FRIMMEL F H. Fate of pharmaceuticals photodegradation by simulated solar UV-light[J]. Chemosphere, 2003, 52(10):1757-1769. [2] ZHANG N, LIU G G, LIU H J, et al. Diclofenac photodegradation under simulated sunlight:Effect of different forms of nitrogen and Kinetics[J]. Journal of Hazardous Materials, 2011, 192(1):411-418. [3] 叶凤娇, 孔德洋, 单正军,等.苯氧羧酸类除草剂土壤降解特性研究[J]. 环境化学,2010,29(6):1147-1151. YE F J, KONG D Y, SHAN Z J, et al. Degradation of phenoxy acid herbicides in soils[J]. Environmental Chemistry, 2010, 29(6):1147-1151(in Chinese).
[4] 邬柏春, 冯化成. 三唑类杀菌剂种菌唑和叶菌唑[J]. 世界农药,2001,23(3):52-53. WU B C, FENG H C. Triazole fungicides ipconazole and metconazole[J]. World Pestic, 2011, 23(3):52-53(in Chinese).
[5] KONWICK B J, GARRISON A W, AVANTS J K, et al. Bioaccumulation and biotransformation of chiral triazole fungicides in rainbow trout (Oncorhynchus mykiss)[J]. Aquatic Toxicology, 2006, 80(4):372-381. [6] NGUYE T D, LEE K J, LEE M H, et al. A multiresidue method for the determination 234 pesticides in Korean herbs using gas chromatography mass spectrometry[J]. Microchemical Journal, 2010, 95(1):43-49. [7] NGUYEN T D, HAN E M, SEO M S, et al. A multi-residue method for the determination of 203 pesticides in rice paddies using gas chromatography/mass spectrometry[J]. Analytica Chimica Acta, 2008, 619(1):67-74. [8] LOZANO A, RAJSKI L, UCLES S, et al. Evaluation of zirconium dioxide-based sorbents to decrease the matrix effect in avocado and almond multiresidue pesticide analysis followed by gas chromatography tandem mass spectrometry[J]. Talanta, 2014, 118:68-83. [9] PIZZUI I R, DE KOK A, ZANELLA R, et al. Method validation for the analysis of 169 pesticides in soya grain, without clean up, by liquid chromatography-tandem mass spectrometry using positive and negative electrospray ionization[J]. Journal of Chromatography A, 2007, 1142(2):123-136. [10] WALORCZYK S. Development of a multi-residue method for the determination of pesticides in cereals and dry animal feed using gas chromatography-tandem quadrupole mass spectrometry Ⅱ. Improvement and extension to new analytes[J]. Journal of Chromatography A, 2008, 1208(1/2):202-214. [11] 农业部农药检定所,环境保护部南京环境科学研究所.化学农药环境安全评价试验准则:GB/T 31270-2014[S]. 北京:中国标准出版社,2014. Institute for the Control of Agrochemicals, Nanjing Institute of Environmental Science, Ministry of Environmental Protection of the Peoples's Republic of China. The guidelines on environmental safety assessment for chemical pesticides:GB/T 31270-2014[S]. Beijing:Standards Press of China, 2014 (in Chinese).
[12] 亓育杰, 杨昱, 郑张瑜, 等.噻呋酰胺的光解和水解特性研究[J]. 农药学学报,2016,18(4):540-544. QI Y J, YANG Y, ZHENG Z Y, et al. Study on the photolysis and hydrolysis properties of thifluzamide[J]. Chinese Journal of Pesticide Science, 2016, 18(4):540-544(in Chinese).
[13] 王媛, 石晓燕.Fe3+诱导全氟羧酸的光化学降解:pH值及链长的影响[J]. 化学学报,2014,72(6):682-688. WANG Y, SHI X Y. Photochemical degradation of perfluorocarboxylic acids induced by ferric ion:Effects of pH and carbon chain. Acta Chimica Sinica[J]. 2014,72(6):682-688(in Chinese).
[14] 陈靖宇, 袁桂平, 欧晓明,等.螺虫乙酯的光化学降解[J]. 农药,2017,56(9):673-675 ,681. CHEN J Y, YUAN G P, OU X M, et al. Photolysis of spirotetramat[J]. Agrochemicals, 2017, 56(9):673-675,681(in Chinese).
[15] 李富华, 陈敏, 孔青青,等.响应面法研究NO3-、NO2-和Fe3+对布洛芬光解的复合影响[J]. 环境化学,2015,34(11):1988-1995. LI F H, CHEN M, KONG Q Q, et al. Combined effects of NO3-, NO2-and Fe3+ on photodegradation of ibuprofen using response surfacemethodology[J]. Environmental Chemistry, 2015, 34(11):1988-1995(in Chinese).
[16] 吴文铸, 郭敏, 孔德洋, 等.3种三唑类杀菌剂的环境降解特性[J]. 生态与农村环境学报,2016,15(10):837-841. WU W Z, GUO M, KONG D X, et al. Degradation of 1,2,4-triazole fungicides in the environment[J].Journal of Ecology and Rural Environment, 2016,15(10):837-841(in Chinese).
[17] 张素琴.微生物分子生态学[M].北京:科学出版社,2006. ZHANG S Q. Molecular microbial ecology[M]. Beijing:Science Press, 2006(in Chinese). [18] TARIQ M I, AFZAL S, HUSSAIN I. Degradation and persistence of cotton pesticides in sandy loam soils from Punjab, Pakistan[J]. Environmental Research, 2006, 100(2):184-196. -

计量
- 文章访问数: 1461
- HTML全文浏览数: 1435
- PDF下载数: 142
- 施引文献: 0