叶菌唑的光解和土壤降解特性

程冰峰, 杨倩文, 周自豪, 王鸣华. 叶菌唑的光解和土壤降解特性[J]. 环境化学, 2018, 37(10): 2230-2236. doi: 10.7524/j.issn.0254-6108.2017112007
引用本文: 程冰峰, 杨倩文, 周自豪, 王鸣华. 叶菌唑的光解和土壤降解特性[J]. 环境化学, 2018, 37(10): 2230-2236. doi: 10.7524/j.issn.0254-6108.2017112007
CHENG Bingfeng, YANG Qianwen, ZHOU Zihao, WANG Minghua. Photolysis and soil degradation of metconazole[J]. Environmental Chemistry, 2018, 37(10): 2230-2236. doi: 10.7524/j.issn.0254-6108.2017112007
Citation: CHENG Bingfeng, YANG Qianwen, ZHOU Zihao, WANG Minghua. Photolysis and soil degradation of metconazole[J]. Environmental Chemistry, 2018, 37(10): 2230-2236. doi: 10.7524/j.issn.0254-6108.2017112007

叶菌唑的光解和土壤降解特性

  • 基金项目:

    国家重点研发项目(2016YFD0200207)资助.

Photolysis and soil degradation of metconazole

  • Fund Project: Supported by the National Key Research and Development Program of China (2016YFD0200207).
  • 摘要: 为明确叶菌唑的环境降解规律,采用室内模拟实验方法,研究了叶菌唑在不同条件下的光解和土壤降解特性.结果表明,在紫外灯照射下,不同pH时,叶菌唑在中性条件下的光解速率最快;环境物质二价铁离子、三价铁离子、硝酸根离子和亚硝酸根离子对叶菌唑的光解均具有抑制作用.叶菌唑在3种不同土壤中的降解顺序为南京黄棕壤 > 东北黑土 > 江西红壤,降解半衰期分别为35.9、51.7、60.3 d,属于中等降解农药;土壤含水量(20%-60%)越高,叶菌唑降解速率越快,当土壤含水量为饱和含水量的80%时,微生物生长将受到抑制,降解速率减慢;土壤中微生物和有机质能加快叶菌唑的降解,在微生物和有机质存在的条件下叶菌唑降解速率分别提高1.1倍和2.3倍.研究结果可为叶菌唑的合理使用和环境安全性评价提供科学依据.
  • 加载中
  • [1] DOLL T E, FRIMMEL F H. Fate of pharmaceuticals photodegradation by simulated solar UV-light[J]. Chemosphere, 2003, 52(10):1757-1769.
    [2] ZHANG N, LIU G G, LIU H J, et al. Diclofenac photodegradation under simulated sunlight:Effect of different forms of nitrogen and Kinetics[J]. Journal of Hazardous Materials, 2011, 192(1):411-418.
    [3] 叶凤娇, 孔德洋, 单正军,等.苯氧羧酸类除草剂土壤降解特性研究[J]. 环境化学,2010,29(6):1147-1151.

    YE F J, KONG D Y, SHAN Z J, et al. Degradation of phenoxy acid herbicides in soils[J]. Environmental Chemistry, 2010, 29(6):1147-1151(in Chinese).

    [4] 邬柏春, 冯化成. 三唑类杀菌剂种菌唑和叶菌唑[J]. 世界农药,2001,23(3):52-53.

    WU B C, FENG H C. Triazole fungicides ipconazole and metconazole[J]. World Pestic, 2011, 23(3):52-53(in Chinese).

    [5] KONWICK B J, GARRISON A W, AVANTS J K, et al. Bioaccumulation and biotransformation of chiral triazole fungicides in rainbow trout (Oncorhynchus mykiss)[J]. Aquatic Toxicology, 2006, 80(4):372-381.
    [6] NGUYE T D, LEE K J, LEE M H, et al. A multiresidue method for the determination 234 pesticides in Korean herbs using gas chromatography mass spectrometry[J]. Microchemical Journal, 2010, 95(1):43-49.
    [7] NGUYEN T D, HAN E M, SEO M S, et al. A multi-residue method for the determination of 203 pesticides in rice paddies using gas chromatography/mass spectrometry[J]. Analytica Chimica Acta, 2008, 619(1):67-74.
    [8] LOZANO A, RAJSKI L, UCLES S, et al. Evaluation of zirconium dioxide-based sorbents to decrease the matrix effect in avocado and almond multiresidue pesticide analysis followed by gas chromatography tandem mass spectrometry[J]. Talanta, 2014, 118:68-83.
    [9] PIZZUI I R, DE KOK A, ZANELLA R, et al. Method validation for the analysis of 169 pesticides in soya grain, without clean up, by liquid chromatography-tandem mass spectrometry using positive and negative electrospray ionization[J]. Journal of Chromatography A, 2007, 1142(2):123-136.
    [10] WALORCZYK S. Development of a multi-residue method for the determination of pesticides in cereals and dry animal feed using gas chromatography-tandem quadrupole mass spectrometry Ⅱ. Improvement and extension to new analytes[J]. Journal of Chromatography A, 2008, 1208(1/2):202-214.
    [11] 农业部农药检定所,环境保护部南京环境科学研究所.化学农药环境安全评价试验准则:GB/T 31270-2014[S]. 北京:中国标准出版社,2014. Institute for the Control of Agrochemicals, Nanjing Institute of Environmental Science, Ministry of Environmental Protection of the Peoples's Republic of China. The guidelines on environmental safety assessment for chemical pesticides:GB/T 31270-2014[S]. Beijing:Standards Press of China, 2014

    (in Chinese).

    [12] 亓育杰, 杨昱, 郑张瑜, 等.噻呋酰胺的光解和水解特性研究[J]. 农药学学报,2016,18(4):540-544.

    QI Y J, YANG Y, ZHENG Z Y, et al. Study on the photolysis and hydrolysis properties of thifluzamide[J]. Chinese Journal of Pesticide Science, 2016, 18(4):540-544(in Chinese).

    [13] 王媛, 石晓燕.Fe3+诱导全氟羧酸的光化学降解:pH值及链长的影响[J]. 化学学报,2014,72(6):682-688.

    WANG Y, SHI X Y. Photochemical degradation of perfluorocarboxylic acids induced by ferric ion:Effects of pH and carbon chain. Acta Chimica Sinica[J]. 2014,72(6):682-688(in Chinese).

    [14] 陈靖宇, 袁桂平, 欧晓明,等.螺虫乙酯的光化学降解[J]. 农药,2017,56(9):673-675

    ,681. CHEN J Y, YUAN G P, OU X M, et al. Photolysis of spirotetramat[J]. Agrochemicals, 2017, 56(9):673-675,681(in Chinese).

    [15] 李富华, 陈敏, 孔青青,等.响应面法研究NO3-、NO2-和Fe3+对布洛芬光解的复合影响[J]. 环境化学,2015,34(11):1988-1995.

    LI F H, CHEN M, KONG Q Q, et al. Combined effects of NO3-, NO2-and Fe3+ on photodegradation of ibuprofen using response surfacemethodology[J]. Environmental Chemistry, 2015, 34(11):1988-1995(in Chinese).

    [16] 吴文铸, 郭敏, 孔德洋, 等.3种三唑类杀菌剂的环境降解特性[J]. 生态与农村环境学报,2016,15(10):837-841.

    WU W Z, GUO M, KONG D X, et al. Degradation of 1,2,4-triazole fungicides in the environment[J].Journal of Ecology and Rural Environment, 2016,15(10):837-841(in Chinese).

    [17] 张素琴.微生物分子生态学[M].北京:科学出版社,2006. ZHANG S Q. Molecular microbial ecology[M]. Beijing:Science Press, 2006(in Chinese).
    [18] TARIQ M I, AFZAL S, HUSSAIN I. Degradation and persistence of cotton pesticides in sandy loam soils from Punjab, Pakistan[J]. Environmental Research, 2006, 100(2):184-196.
  • 加载中
计量
  • 文章访问数:  1461
  • HTML全文浏览数:  1435
  • PDF下载数:  142
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-11-20
  • 刊出日期:  2018-10-15
程冰峰, 杨倩文, 周自豪, 王鸣华. 叶菌唑的光解和土壤降解特性[J]. 环境化学, 2018, 37(10): 2230-2236. doi: 10.7524/j.issn.0254-6108.2017112007
引用本文: 程冰峰, 杨倩文, 周自豪, 王鸣华. 叶菌唑的光解和土壤降解特性[J]. 环境化学, 2018, 37(10): 2230-2236. doi: 10.7524/j.issn.0254-6108.2017112007
CHENG Bingfeng, YANG Qianwen, ZHOU Zihao, WANG Minghua. Photolysis and soil degradation of metconazole[J]. Environmental Chemistry, 2018, 37(10): 2230-2236. doi: 10.7524/j.issn.0254-6108.2017112007
Citation: CHENG Bingfeng, YANG Qianwen, ZHOU Zihao, WANG Minghua. Photolysis and soil degradation of metconazole[J]. Environmental Chemistry, 2018, 37(10): 2230-2236. doi: 10.7524/j.issn.0254-6108.2017112007

叶菌唑的光解和土壤降解特性

  • 1. 南京农业大学植物保护学院, 南京, 210095
基金项目:

国家重点研发项目(2016YFD0200207)资助.

摘要: 为明确叶菌唑的环境降解规律,采用室内模拟实验方法,研究了叶菌唑在不同条件下的光解和土壤降解特性.结果表明,在紫外灯照射下,不同pH时,叶菌唑在中性条件下的光解速率最快;环境物质二价铁离子、三价铁离子、硝酸根离子和亚硝酸根离子对叶菌唑的光解均具有抑制作用.叶菌唑在3种不同土壤中的降解顺序为南京黄棕壤 > 东北黑土 > 江西红壤,降解半衰期分别为35.9、51.7、60.3 d,属于中等降解农药;土壤含水量(20%-60%)越高,叶菌唑降解速率越快,当土壤含水量为饱和含水量的80%时,微生物生长将受到抑制,降解速率减慢;土壤中微生物和有机质能加快叶菌唑的降解,在微生物和有机质存在的条件下叶菌唑降解速率分别提高1.1倍和2.3倍.研究结果可为叶菌唑的合理使用和环境安全性评价提供科学依据.

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回