珠江口生物中多氯萘、六氯丁二烯和五氯苯酚的含量水平和分布特征
Polychlorinated naphthalenes, hexachlorobutadiene and pentachlorophenol in biota of the Pearl River Estuary: Occurrence and congener profiles
-
摘要: 为了解珠江口生物中新增持久性有机污染物多氯萘(PCNs)、六氯丁二烯(HCBD)和五氯苯酚(PCP)及其醚类(五氯苯甲醚,PCA)和酯类(月桂酸五氯苯酯,PCPL)的污染特征,本研究采集了珠江口鱼类、甲壳类(虾和蟹)和贝类(牡蛎)等生物样品,并分析了这些样品中PCNs、HCBD、PCP、PCA和PCPL的含量.珠江口牡蛎样品中PCNs的浓度(32-77 ng·g-1脂重(lw))显著高于鱼类样品(3.0-27 ng·g-1 lw)和甲壳类的虾蟹样品(2.7-29 ng·g-1 lw)(P-1 lw,平均值为1.8±1.4 pg·g-1 lw,高于鱼类和虾蟹样品;PCN73是珠江口生物样品毒性当量的主要贡献者(60.8%-99.8%).珠江口生物样品中HCBD的浓度为n.d.-0.99 ng·g-1 lw,不同生物样品中HCBD的浓度没有显著性差异(P>0.05).PCA在生物样品中检出率高于PCP和PCPL.与其他研究相比,珠江口生物样品中PCP的浓度(n.d.-100 ng·g-1 lw)处于中等偏低水平.Abstract: Concentrations and distribution characteristics of polychlorinated naphthalenes (PCNs), hexachlorobutadiene (HCBD), pentachlorophenol (PCP), pentachloroanisole (PCA) and pentachlorophenyl laurate (PCPL) were analyzed in fish, crustacea (prawns and crabs) and shellfish (oysters) samples collected from the Pearl River Estuary (PRE). PCN concentrations in oysters ranged from 32 ng·g-1 lipid weight (lw) to 77 ng·g-1 lw, which were significantly higher than those in fish (3.0-27 ng·g-1 lw) and crustacea (2.7-29 ng·g-1 lw) (P4PCNs (the sum of PCN2, PCN6, PCN13 and PCN28) ranging from 76% to 99%. The toxic equivalent quantities (TEQs) of PCNs in oysters varied from 0.03 pg·g-1 lw to 4.4 pg·g-1 lw (average:1.8±1.4 pg·g-1 lw), which were higher than those in fishes, prawns and crabs. PCN73 contributed the most to the total PCN corresponding TEQs, with percentages of 60.8%-99.8%. HCBD in biota samples varied from n.d. to 0.99 ng·g-1 lw, and no significant differences were observed among three species investigated (P>0.05). PCA was more frequently detected than PCP and PCPL in all the samples. In global comparison, PCP concentrations in the biota samples of this study were at low-to-middle levels.
-
-
[1] SUN R X, LUO X J, TAN X X, et al. An eight year (2005-2013) temporal trend of halogenated organic pollutants in fish from the Pearl River Estuary, South China[J]. Marine Pollution Bulletin, 2015, 93:61-67. [2] SUN R X, LUO X J, TAN X X, et al. Legacy and emerging halogenated organic pollutants in marine organisms from the Pearl River Estuary, South China[J]. Chemosphere, 2015, 139:565-571. [3] SUN R, LUO X, TANG B, et al. Short-chain chlorinated paraffins in marine organisms from the Pearl River Estuary in South China:Residue levels and interspecies differences[J]. Science of the Total Environment, 2016, 553:196-203. [4] 姜国, 陈来国, 何秋生, 等. 上海食用鱼中短链氯化石蜡的污染特征[J]. 环境科学, 2013, 34(9):3374-3380. JIANG G, CHEN L G, HE Q S, et al. Contamination characteristics of short-chain chlorinated paraffins in edible fish of Shanghai[J]. Environmental Science, 2013, 34(9):3374-3380(in Chinese).
[5] 黄蓉, 张素坤, 任明忠, 等.高分辨率气相色谱/高分辨率质谱同位素内标法测定烟气样品中的多氯萘[J]. 环境化学,2015, 34(3):529-535. HUANG R, ZHANG S K, REN M Z, et al. Determination of polychlorinated naphthalenes in flue gas samples by HRGC/HRMS isotope internal standard method[J]. Environmental Chemistry, 2015, 34(3):529-535(in Chinese).
[6] 赵曦, 李娟, 陆克定, 等.华南某垃圾焚烧厂排放PCBs和PCNs的固气分布、同系物分布及毒性当量特征[J].环境化学,2015, 34(7):1268-1274. ZHAO X, LI J, LU K D, et al. Characterization of particle/gas partition, congener patterns, and TEQ of PCBs and PCNs released from a municipal solid waste incinerator (MSWI) in South China[J]. Environmental Chemistry, 2015, 34(7):1268-1274(in Chinese).
[7] LIU G, LV P, JIANG X, et al. Identifying iron foundries as a new source of unintentional polychlorinated naphthalenes and characterizing their emission profiles[J]. Environmental Science & Technology, 2014, 48:13165-13172. [8] JIANG Q, HANARI N, MIYAKE Y, et al. Health risk assessment for polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans, and polychlorinated naphthalenes in seafood from Guangzhou and Zhoushan, China[J]. Environmental Pollution, 2007, 148:31-39. [9] 杨永亮, 潘静, 朱晓华, 等. 青岛及崇明岛食用鱼和鸭中共平面多氯联苯与多氯萘的研究[J].环境科学研究, 2009, 22(2):187-193. YANG Y L, PAN J, ZHU X H, et al. Studies on coplanar-PCBs and PCNs in edible fish and duck in Qingdao and Chongming Island[J]. Research of Environmental Sciences, 2009, 22(2):187-193(in Chinese).
[10] ROSE M, FERNANDES A, MORTIMER D, et al. Contamination of fish in UK fresh water systems:Risk assessment for human consumption[J]. Chemosphere, 2015, 122:183-189. [11] ISOSAARI P, HALLIKAINEN A, KIVIRANTA H, et al. Dioxins, PCBs, PCNs and PBDEs in edible fish caught from the Baltic sea and lakes in Finland[J]. Environmental Pollution, 2006, 141:213-225. [12] PAN J, YANG Y L, CHEN D Z, et al. Distribution characteristics and source analysis of dioxins in sediments and mussels from Qingdao coastal sea[J]. Chemosphere, 2008, 70:1699-1706. [13] FERNANDES A, TLUSTOS C, ROSE M, et al. Polychlorinated naphthalenes (PCNs) in Irish foods:occurrence and human exposure[J]. Chemosphere, 2011, 85:322-328. [14] FERNANDES A, SMITH F, PETCH R, et al. Investigation into the levels of environmental contaminants in Scottish marine and freshwater fin fish and shellfish[EB/OL].[2017-12-10]. https://www.food.gov.uk/ [15] FALANDYSZ J, STRANDBERG L, BERGQVIST P-A, et al. Spatial distribution and bioaccumulation of polychlorinated naphthalenes (PCNs) in mussel and fish from the Gulf of Gdansk, Baltic Sea[J]. Science of the Total Environment, 1997, 203:93-104. [16] BLANKENSHIP A L, KANNAN K, VILLALOBOS S A, et al. Relative potencies of individual polychlorinated naphthalenes and halowax mixtures to induce Ah receptor-mediated responses[J]. Environmental Science & Technology, 2000, 34:3153-3158. [17] LIN Y, ZHAO Y, QIU X, et al. Spatial distribution of polychlorinated naphthalenes in the atmosphere across North China based on gridded field observations[J]. Environmental Pollution, 2013, 180:27-33. [18] HELM P A, BIDLEMAN T F, LI H H, et al. Seasonal and spatial variation of polychlorinated naphthalenes and non-/mono-ortho-substituted polychlorinated biphenyls in arctic air[J]. Environmental Science & Technology, 2004, 38:5514-5521. [19] NOMA Y, YAMAMOTO T, SAKAI S I. Congener-specific composition of polychlorinated naphthalenes, coplanar PCBs, dibenzo-p-dioxins, and dibenzofurans in the Halowax series[J]. Environmental Science & Technology, 2004, 38:1675-1680. [20] ROOSE P, VAN THUYNE G, BELPAIRE C, et al. Determination of VOCs in yellow eel from various inland water bodies in Flanders (Belgium)[J].Journal of Environmental Monitoring, 2003, 5:876-884. [21] JVRGENS M D, JOHNSON A C, JONES K C, et al. The presence of EU priority substances mercury, hexachlorobenzene, hexachlorobutadiene and PBDEs in wild fish from four English rivers[J].Science of the Total Environment, 2013, 461-462:441-452. [22] MACGREGOR K, OLIVER I W, HARRIS L, et al. Persistent organic pollutants (PCB, DDT, HCH, HCB & BDE) in eels (Anguilla anguilla) in Scotland:current levels and temporal trends[J]. Environmental Pollution, 2010, 158:2402-2411. [23] MIEGE C, PERETTI A, LABADIE P, et al. Occurrence of priority and emerging organic compounds in fishes from the Rhone River (France)[J]. Analytical and Bioanalytical Chemistry, 2012, 404:2721-2735. [24] GE J, PAN J, FEI Z, et al. Concentrations of pentachlorophenol (PCP) in fish and shrimp in Jiangsu Province, China[J].Chemosphere, 2007, 69:164-169. [25] PAN J, YANG Y L, CHEN D Z, et al. Distribution characteristics and source analysis of dioxins in sediments and mussels from Qingdao coastal sea[J]. Chemosphere, 2008, 70:1699-1706. -

计量
- 文章访问数: 1609
- HTML全文浏览数: 1581
- PDF下载数: 150
- 施引文献: 0