典型磺胺类抗生素在稻田土中的纵向迁移
Vertical migration of typical sulfonamide antibiotics in paddy soil
-
摘要: 兽用抗生素的广泛使用以及畜禽粪污还田资源化利用是农田土壤抗生素污染的重要来源,而抗生素在土壤中的迁移特性对生态环境具有潜在风险.为分析典型磺胺类抗生素在土壤中的迁移特征,采用室内土柱淋溶实验研究了磺胺甲基嘧啶(SM)、磺胺二甲基嘧啶(SM2)和甲氧苄啶(TMP)在稻田土中的淋溶规律,模拟了不同淋溶时间、不同污染程度和不同降雨pH对3种磺胺类抗生素在稻田土中纵向迁移的影响.结果表明,在雨水冲刷下,3种磺胺类抗生素的淋溶迁移性为TMP > SM > SM2.随淋溶时间的增长和污染程度增加,磺胺类抗生素纵向迁移能力增强,进而增加其向地下水迁移的风险.3种磺胺类抗生素在酸雨作用下更容易在土壤中吸附.Abstract: Agricultural fields worldwide are contaminated by the widespread use of veterinary antibiotics via livestock and poultry manure applied as fertilizers for irrigation. Antibiotics migration results in damages to the terrestrial environments. Batch experiments were conducted to investigate the leaching behavior of sulfamethazine (SM), sulfamethazine (SM2) and trimethoprim (TMP). The aim of this study was to explore the effects of rainfall duration, antibiotics concentrations and rainfall with different pH values on the leaching behavior of three different sulfanilamide antibiotics along the soil column. The results showed that the leaching ability of the three sulfanilamide antibiotics was in the order of TMP > SM > SM2. With the increase of rainfall duration and pollution level, the migration ability of sulfanilamide antibiotics increased, leading to the increasd risk of groundwater contemination. These three sulfanilamide antibiotics were more easily adsorbed by soil under acid rain.
-
Key words:
- paddy soil /
- sulfanilamide antibiotics /
- column-leach /
- migration
-
-
[1] SAPKOTA A, SAPKOTA A R, KUCHARSKI M, et al. Aquaculture practices and potential human health risks:Current knowledge and future priorities[J]. Environment International, 2008, 34(8):1215-1226. [2] FEDOROVA G, NEBESKY V, RANDAK T, et al. Simultaneous determination of 32 antibiotics in aquaculture products using LC-MS/MS[J]. Chemical Papers, 2014, 68(1):29-36. [3] GRABICOVA K, GRABIC R, BLAHA M, et al. Presence of pharmaceuticals in benthic fauna living in a small stream affected by effluent from a municipal sewage treatment plant[J]. Water Research, 2015, 72:145-153. [4] BOECKEL T P, BROWER C, GILBERT M, et al. Global trends in antimicrobial use in food animals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(18):5649-5654. [5] ZHU Y G, JOHNSON T A, SU J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Pnas, 2013, 110(9):3435-3440. [6] HVISTENDAJL M. China takes aim at rampant antibiotic resistance[J]. Science, 2012, 336(6083):795. [7] HALLER M Y, MVLLER S R, MCARDELL C S, et al. Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography-mass spectrometry[J]. Journal of Chromatography A, 2002, 952(1-2):111-120. [8] BLACKWELL P A, HOLTEN LVTZHØFT H C, MA H P, et al. Ultrasonic extraction of veterinary antibiotics from soils and pig slurry with SPE clean-up and LC-UV and fluorescence detection[J]. Talanta, 2004, 64(4):1058-1064. [9] XIAN-GANG H U, YI L, ZHOU Q X, et al. Determination of thirteen antibiotics residues in manure by solid phase extraction and high performance liquid chromatography[J]. Chinese Journal of Analytical Chemistry, 2008, 36(9):1162-1166. [10] ZHAO L, DONG Y H, WANG H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China[J]. Science of the Total Environment, 2010, 408(5):1069-1075. [11] 陈昦, 董元华, 王辉, 等. 江苏省畜禽粪便中磺胺类药物残留特征[J]. 农业环境科学学报, 2008, 27(1):385-389. CHEN H, DONG Y H, WANG H, et al. Residual characteristics of sulfanilamide in animal feces in Jiangsu province[J]. Journal of Agro-Environment Science, 2008, 27(1):385-389(in Chinese).
[12] QIU J R, ZHAO T, LIU Q Y, et al. Residual veterinary antibiotics in pig excreta after oral administration of sulfonamides[J]. Environmental Geochemistry and Health, 2016, 38(2):549-556. [13] BARAN W, ADAMEK E, ZIEMIAN'SKA J, et al. Effects of the presence of sulfonamides in the environment and their influence on human health[J]. Journal of Hazardous Materials, 2011, 196(1):1-15. [14] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782. [15] 李曼, 陈卫平, 魏福祥, 等. 典型磺胺类抗生素在土柱中的淋溶规律研究[J]. 环境科学, 2013, 34(10):4042-4049. LI M, CHEN W P, WEI F X, et al. Leaching characteristics of sulfadiazine and sulfamethoxazole in soil column[J]. Environmental Sciences, 2013, 34(10):4042-4049(in Chinese).
[16] SARMAH A K, MRYER M T, BOXALL A B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere, 2006, 65(5):725-759. [17] SACHET F, LANGE F T, BRAUCH H J, et al. Pharmaceuticals in groundwaters analytical methods and results of a monitoring program in Baden-Württemberg, Germany[J]. Journal of Chromatography A, 2001, 938(1-2):199-210. [18] 伊丽丽, 焦文涛, 陈卫平. 不同抗生素在剖面土壤中的吸附特征[J]. 环境化学, 2013, 32(12):2357-2363. YI L L, JIAO W T, CHEN W P. Adsorption characteristics of three types of antibiotics in the soil profiles[J]. Environmental Chemistry, 2013, 32(12):2357-2363(in Chinese).
[19] UNOLD M, KASTEEL R, GROENEWEG J, et al. Transport and transformation of sulfadiazine in soil columns packed with a silty loam and a loamy sand[J]. Journal of Contaminant Hydrology, 2009, 103(1-2):38-47. [20] LIN K, GAN J. Sorption and degradation of wastewater-associated non-steroidal anti-inflammatory drugs and antibiotics in soils[J]. Chemosphere, 2011, 83(3):240-246. [21] PAN M, CHU L M. Leaching behavior of veterinary antibiotics in animal manure-applied soils[J]. Science of the Total Environment, 2017, 579:466-473. [22] SANLI N, SANLI S, ÖZKAN G, et al. Determination of pKa values of some sulfonamides by LC and LC-PDA methods in acetonitrile-water binary mixtures[J]. Journal of the Brazilian Chemical Society, 2010, 21(10):1952-1960. [23] YU T H, LIN A Y, PANCHANGAM S C, et al. Biodegradation and bio-sorption of antibiotics and non-steroidal anti-inflammatory drugs using immobilized cell process[J]. Chemosphere, 2011, 84(9):1216-1222. [24] BEULKE S, BROWN C D, FRYER C J, et al. Lysimeter study to investigate the effect of rainfall patterns on leaching of isoproturon[J]. Pest Management Science, 2002, 58(1):45-53. [25] BLACKWELL P A, KAY P, ASHAUER R, et al. Effects of agricultural conditions on the leaching behaviour of veterinary antibiotics in soils[J]. Chemosphere, 2009, 75(1):13-19. [26] AUST M O, GODLINSKI F, TRAVIS G R, et al. Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle[J]. Environmental Pollution, 2008, 156(3):1243-1251. [27] BATT A L, SNOW D D, AGA D S. Occurrence of sulfonamide antimicrobials in private water wells in Washington County, Idaho, USA[J]. Chemosphere, 2006, 64(11):1963-1971. [28] DÍAZ-CRUZ M S, GARCÍA-GALÁN M J, BARCELÍ D. Highly sensitive simultaneous determination of sulfonamide antibiotics and one metabolite in environmental waters by liquid chromatography-quadrupole linear ion trap-mass spectrometry[J]. Journal of Chromatography A, 2008, 1193(2):50-59. [29] SUKUL P, LAMSHÖFT M, ZVHLKE S, et al, Sorption and desorption of sulfadiazine in soil and soil-manure systems[J]. Chemosphere, 2008,73(8):1344-1350. [30] PIONKE H B, GLOTFELTY D E, LUCAS A D, et al. Pesticide contamination of groundwaters in the mahantango creek watershed[J]. Journal of Environmental Quality, 1988, 17(1):76-84. [31] 张从良, 王岩, 王福安. 磺胺类药物在土壤中的微生物降解[J]. 农业环境科学学报, 2007, 26(5):1658-1662. ZHANG C L, WANG Y, WANG F A. Microbial degradation of sulfonamides in soils[J]. Journal of Agro-Environmental Science, 2007, 26(5):1658-1662(in Chinese).
[32] FIGUEROADIVA R A, VASUDEVAN D, MACKAY A A. Trends in soil sorption coefficients within common antimicrobial families[J]. Chemosphere, 2010, 79(8):786-793. [33] SRINIVASAN P, SARMAH A K, MANLEYHARRIS M. Co-contaminants and factors affecting the sorption behaviour of two sulfonamides in pasture soils[J]. Environmental Pollution, 2013, 180(3):165-172. [34] THIELEBRUHN S, SEIBICKE T, SCHULTEN H R, et al. Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions[J]. Journal of Environmental Quality, 2004, 33(4):1331-1342. [35] MAREN KAHEL A, STAMM C. Sorption of the veterinary antimicrobial sulfathiazole to organic materials of different origin[J]. Environmental Science & Technology, 2007, 41(1):132-138. [36] JONES A D, BRULAND G L, AGRAWAL S G, et al. Factors influencing the sorption of oxytetracycline to soils[J]. Environmental Toxicology & Chemistry, 2005, 24(4):761-770. [37] WANG Y, DUH J, LIN K, et al. Movement of three s-triazine herbicides atrazine, simazine, and ametryn in subtropical soils[J]. Bulletin of Environmental Contamination & Toxicology, 1996, 57(5):743-750. [38] GAO J, PEDERSEN J A. Adsorption of sulfonamide antimicrobial agents to clay minerals[J]. Environmental Science & Technology, 2005, 39(24):9509-9516. [39] 孔晶晶, 裴志国, 温蓓, 等. 磺胺嘧啶和磺胺噻唑在土壤中的吸附行为[J]. 环境化学, 2008, 27(6):736-741. KONG J J, PEI Z G, WEN P, et al. Adsorption of sulfadiazine and sulfathiazole by soils[J]. Environmental Chemistry, 2008, 27(6):736-741(in Chinese).
[40] TOLLS J. Sorption of veterinary pharmaceuticals in soils:A review[J]. Environmental Science & Technology, 2001, 35(17):3397-3406. -

计量
- 文章访问数: 1808
- HTML全文浏览数: 1776
- PDF下载数: 201
- 施引文献: 0