含硫酸根的高碳氮比废水产甲烷强化技术及酶学机制
Enhancement of methane production from high C/N ratio wastewater containing sulfate and its enzymatic mechanism
-
摘要: 污泥蛋白质回收已成为剩余污泥资源化的有效途径之一,研究其提取残液的产甲烷强化技术不仅可助力剩余污泥蛋白质提取技术的应用进程,也可为化工、食品行业高硫酸根和高碳氮比废水的厌氧生物处理提供有益参考.结果表明,铁及其螯合物添加不仅可有效促进水解酸化与产甲烷过程关键酶的活性,还可显著抑制亚硫酸盐还原酶的活性,产气效果得到明显提高.当添加10 μmol·L-1氨三乙酸与40 mg·L-1零价铁时,累积产气率达196.2 mL·g-1COD,与对照实验相比,提高了123.97%.多糖是含硫酸根的高碳氮比废水产甲烷的主要底物.结合关键酶活性的变化发现,与酸化过程相比,多糖与蛋白质水解是提高产甲烷效果的限速步骤.Abstract: Recovery of sludge protein has become one of the most efficient routes for utilizing waste activated sludge (WAS). It is helpful for the application of WAS protein recovery and will provide useful information for high C/N ratio wastewater containing sulfate from chemical and food industries to study the enhancement of methane production from wastewater of protein recovery. The results showed that the addition of iron and its chelate efficiently enhanced methane production via promoting the activities of key enzymes of hydrolytic acidification and inhibiting those of sulfate reductase. When 10 μmol·L-1 nitrilotriacetic acid (NTA) and 40 mg·L-1 Fe0 were added, the cumulative biogas production rate reached 196.2 mL·g-1 COD. It increased by 123.97%, compared with the control. The polysaccharides were the main substrate for methane production from high C/N ratio wastewater containing sulfate. The hydrolysis of polysaccharides and proteins was the limiting step to improve methane production, compared with the acidification process, by integrating the variations in the activities of key enzymes.
-
-
[1] 陈冠宏,陈旭婷. 浅谈污泥处理处置工艺[J]. 广东化工,2016,43(13):170-172. CHEN G H, CHEN X T. Introduction to sludge treatment and disposal technology[J].Guangdong Chemical Industry, 2016, 43(13):170-172(in Chinese).
[2] 金鹏康,陈飞,章佳昕,等. 活性污泥胞外聚合物的分层组分及溶解性微生物代谢产物的特性[J]. 环境化学, 2015, 34(7):1323-1328. JIN P K, CHEN F, ZHANG J X, et al. Characteristics of the stratification components of extracellular polymeric substances and soluble microbial products in activated sludge[J]. Environmental Chemistry, 2015, 34(7):1323-1328(in Chinese).
[3] 苏景瑞. 剩余污泥酶法水解制备蛋白质氨基酸及其机理研究[D]. 上海:东华大学,2013. SU J R. Mechanism research on extraction protein and animal acids from the excess sludge by enzymatic hydrolysis[D]. Shanghai:Donghua University, 2013(in Chinese). [4] 施正华, 李秀芬, 宋小莉,等. 采用等电点沉淀法回收市政污泥水解液中的蛋白质[J]. 环境工程学报, 2016, 10(10):367-371. SHI Z H, LI X F, SONG X L, et al. Protein recovery from hydrolysis solution of municipal sludge by isoelectric point precipitation[J]. Journal of Environmental Engineering, 2016, 10(10):367-371(in Chinese).
[5] 施正华. 剩余污泥热碱水解液中蛋白质的分离提取技术研究[D]. 无锡:江南大学,2017. SHI Z H. Study on separation of protein from alkaline thermal hydrolysate of waste activated sludge[D]. Wuxi:Jiangnan University, 2017(in Chinese). [6] 高廷耀,顾国维,周琪,等. 水污染控制工程[M].第三版. 北京:高等教育出版社,2007. GAO T Y, GU G W, ZHOU Q, et al. Environmental engineering Specialty[M]:Third edition. Beijing:Higher Education Press, 2007(in Chinese). [7] 胡庆昊. 镍及其螯合物对甲烷发酵的影响及机理研究[D]. 无锡:江南大学,2008. HU Q H. The effect of trace metal nickel in methane fermentation[D]. Wuxi:Jiangnan University, 2008(in Chinese). [8] 张万钦,吴树彪,郎乾乾,等. 微量元素对沼气厌氧发酵的影响[J]. 农业工程学报,2013,29(10):1-11. ZHANG W Q, WU S B, LANG Q Q, et al. Trace elements on influence of anaerobic fermentation in biogas projects[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(10):1-11(in Chinese).
[9] HU Q H, LI X F, CHEN J, et al. Effect of nitrilotriacetic acid on batch methane fermentation of sulfate-containing wastewater[J]. Process Biochemistry, 2008,43:553-558. [10] HU Q H, LI X F, DU G C, et al. Enhancement of methane fermentation in the presence of Ni2+ chelators[J]. Engineering Journal, 2008,38:98-104. [11] 国家环境保护总局. 水和废水监测分析方法[M].第四版. 北京:中国环境科学出版社,2002. State Environmental Protection Administration. Methods for Monitoring and Analysis of Water and Wastewater[M]. Fourth Edition. Beijing:China Environmental Science Press, 2002(in Chinese). [12] LI Y, RYSZARD J. Microbial enzymatic activities in aerobic activated sludge model reactors[J]. Enzyme and Microbial Technology, 2006(39):568-572. [13] LU S G, TSUYOSHI I, MASAO U, et al. Start-up performances of dry anaerobic mesophilic and thermophilic digestions of organic solid wastes[J]. Journal of Environmental Sciences, 2007,19:416-420. [14] 刘和,刘晓玲,邱坚,等. C/N对污泥厌氧发酵产酸类型及代谢途径的影响[J]. 环境科学学报,2010,30(2):340-346. LIU H, LIU X L, QIU J, et al. The effects of C/N ratio on the production of volatile fatty acids and the metabolic pathway of anaerobic fermentation of sewage sludge[J]. Acta Scientiae Circumstantiae, 2010, 30(2):340-346(in Chinese).
[15] LE C Q, JOSEPH E, NGUYEN T, et al. Optimization of expression and purification of recombinant archeoglobus fulgidus F420H2:NADP+ oxidoreductase, an F420 cofactor dependent enzyme[J]. Protein Journal. 2015,34:391-397. [16] 尹小波,连莉文,徐洁泉,等. 产甲烷过程的独特酶类及生化监测方法[J]. 中国沼气,1998(3):8-13. YIN X B, LIAN L W, XU J Q, et al. Unique Enzymes and Biochemical Monitoring Methods in Methanogenesis[J]. China Biogas, 1998 (3):8-13(in Chinese).
[17] 常磊峰. 硫酸盐还原分离菌APS还原酶和亚硫酸盐还原酶的纯化及性质研究[D]. 呼和浩特:内蒙古师范大学,2008. CHANG L F. Isolation, purification and properties of APS reductase and sulfate reductase from sulfate-reducing bacterium[D]. Huhehot:Inner Mongol Normal University, 2008(in Chinese). [18] 蔡靖, 郑平, 张蕾. 硫酸盐还原菌及其代谢途径[J]. 科技通报, 2009, 25(4):427-431. CAI J, ZHENG P, ZHANG L. Sulfate-reducing bacteria and their metabolic pathway[J]. Bulletin of Science and Technology, 2009, 25(4):427-431(in Chinese).
[19] 马素丽,刘浩,严群. Fe2+对太湖蓝藻厌氧发酵产甲烷过程中关键酶的影响[J]. 食品与生物技术学报,2011,30(2):306-310. MA S L, LIU H, YAN Q. Effect of Fe2+ concentration on the enzymes during methane production from Taihu blue algae by anaerobic digestion[J]. Journal of Food Science and Biotechnology, 2011, 30(2):306-310(in Chinese).
[20] FENG Y H, ZHANG Y B, XIE Q, et al. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron[J]. Water Research, 2014,52:242-250. [21] ZHANG H Y, TIAN Y, WANG L, et al. Effect of ferrous chloride on biogas production and enzymatic activities during anaerobic fermentation of cow dung and Phragmites straw[J]. Biodegradation, 2016,27:69-82. [22] MENG X S, ZHANG Y B, LI Q, et al. Adding Fe0 powder to enhance the anaerobic conversion of propionate to acetate[J]. Biochemical Engineering Journal, 2013,73:80-85. [23] 方晓瑜,李家宝,芮俊鹏,等. 产甲烷生化代谢途径研究进展[J]. 应用与环境生物学报,2015,21(1):1-9. FANG X Y, LI J B, RUI J P, et al. Research progress in biochemical pathways of methanogenesis[J]. Journal of Applied and Environmental Biology, 2015, 21(1):1-9(in Chinese).
[24] 李朝正.[Fe]-氢化酶活性中心模拟物结构的理论研究[D]. 新乡:河南师范大学, 2015. LI C Z. Theoretical study on the structural mimic of the active site of[Fe]-hydrogenase[D]. Xinxiang:Henan Normal University, 2015(in Chinese). [25] 刘晓华. 硫酸盐还原菌亚硫酸盐还原酶的初步研究[D]. 成都:四川大学,2006. LIU X H. Pilot study on sulphate reducing bacteria-sulfite reductase[D]. Chengdu:Sichuan University, 2006(in Chinese). -
![WeChat](http://eekw.rcees.ac.cn//eekw-data/hjhx/2019/1/PIC/wechat_cnhjhx_6742.jpg)
计量
- 文章访问数: 1476
- HTML全文浏览数: 1462
- PDF下载数: 36
- 施引文献: 0