饮用水处理过程中溶解性有机物表征方法的研究进展

柳婷, 杨海燕, 董慧峪, 强志民, 李翼. 饮用水处理过程中溶解性有机物表征方法的研究进展[J]. 环境化学, 2019, 38(2): 263-273. doi: 10.7524/j.issn.0254-6108.2018040906
引用本文: 柳婷, 杨海燕, 董慧峪, 强志民, 李翼. 饮用水处理过程中溶解性有机物表征方法的研究进展[J]. 环境化学, 2019, 38(2): 263-273. doi: 10.7524/j.issn.0254-6108.2018040906
LIU Ting, YANG Haiyan, DONG Huiyu, QIANG Zhimin, LI Yi. Characterization methods of dissolved organic matter in drinking water treatment[J]. Environmental Chemistry, 2019, 38(2): 263-273. doi: 10.7524/j.issn.0254-6108.2018040906
Citation: LIU Ting, YANG Haiyan, DONG Huiyu, QIANG Zhimin, LI Yi. Characterization methods of dissolved organic matter in drinking water treatment[J]. Environmental Chemistry, 2019, 38(2): 263-273. doi: 10.7524/j.issn.0254-6108.2018040906

饮用水处理过程中溶解性有机物表征方法的研究进展

  • 基金项目:

    国家自然科学基金(51525806),水体污染控制与治理科技重大专项(2017ZX07207-004),十三五国家重点研发计划(2017YFF0211703)和北京建筑大学研究生创新项目(PG2018044)资助

Characterization methods of dissolved organic matter in drinking water treatment

  • Fund Project: Supported by the National Natural Science Foundation of China(51525806), Major Science and Technology Program for Water Pollution Control and Treatment(2017ZX07207-004),13 National Key R&D Projects(2017YFF0211703)and the BUCEA Post Graduate Innovation Project(PG2018044)
  • 摘要: 溶解性有机物(DOM)结构、组分复杂,传统水处理工艺(混凝、沉淀、过滤、消毒)、深度处理工艺等对DOM去除有限,在消毒过程中可能生成消毒副产物.DOM的结构、组分影响其在饮用水处理过程中的去除效果.为了深入了解DOM在饮用水处理过程中的结构、形态变化,需采用多种检测方法对其变化进行表征.本文围绕DOM在不同饮用水处理工艺中的分子量、馏分、芳香性及荧光组分等性质的变化,综述了当前饮用水研究较为广泛的预处理分级(物理分级-超滤膜过滤、化学分级-树脂吸附)、紫外-可见吸收光谱、三维荧光光谱等表征方法的研究进展,对不同表征方法的优点及局限性进行了详细探讨,以期为准确评估水处理过程中DOM的变化提供科学依据.
  • 加载中
  • [1] YAN M, FU Q, LI D, et al. Study of the pH influence on the optical properties of dissolved organic matter using fluorescence excitation-emission matrix and parallel factor analysis[J]. Journal of Luminescence, 2013, 142: 103-109.
    [2] 魏群山, 罗专溪, 陈强, 等. 天然水体溶解性有机物 (DOM) 分级组分对典型城市源污染的荧光响应[J]. 环境科学研究, 2010, 23(10): 1229-1235.

    WEI Q S, LUO Z X, CHEN Q, et al. Fluorescence response of DOM fractionated components to typical urban source pollution[J]. Environmental Sciences Research, 2010, 23(10): 1229-1235 (in Chinese).

    [3] 张朝晖, 李想乐, 赵赫, 等. 微污染地表水中天然有机物预氧化后各组分去除规律[J]. 给水排水, 2015, 41(11): 115-121.

    Zhang Z H, LI X L, ZHAO H, et al. Removal of components after pre-oxidation of natural organics in micro-polluted surface water[J]. Water & Wastewater, 2015, 41(11): 115-121 (in Chinese).

    [4] 梁远, 魏群山, 王东升, 等. 滦河水体溶解性有机物的综合分级表征及其混凝去除过程[J].环境工程学报, 2007, 1(11): 17-22.

    LIANG Y, WEI Q S, WANG D S, et al. Comprehensive graded characterization of dissolved organics in the water of the Luanhe River and its removal process [J]. Chinese Journal of Environmental Engineering, 2007, 1(11): 17-22 (in Chinese).

    [5] WEI Q, FENG C, WANG D, et al. Seasonal variations of chemical and physical characteristics of dissolved organic matter and trihalomethane precursors in a reservoir: A case study[J]. Journal of Hazardous Materials, 2008, 150(2): 257-264.
    [6] WEI Q, WANG D, WEI Q, et al. Size and resin fractionations of dissolved organic matter and trihalomethane precursors from four typical source waters in China[J]. Environmental Monitoring and Assessment, 2008, 141(1): 347-357.
    [7] QI W, ZHANG H, HU C, et al. Effect of ozonation on the characteristics of effluent organic matter fractions and subsequent associations with disinfection by-products formation[J]. Science of the Total Environment, 2018, 610: 1057-1064.
    [8] 乔春光, 魏群山, 王东升, 等. 南方天然水体 DOM 的化学分级, 变化特征及三卤甲烷生成势 (THMFP) 特性研究[J]. 环境科学学报, 2006, 26(6): 944-948.

    QIAO C.G, WEI Q S, WANG D S, et al. Study on the chemical grading, change characteristics and trihalomethane generation potential (THMFP) characteristics of natural DOM in southern China[J]. Journal of Environmental Science, 2006, 26(6): 944- 948. (in Chinese).

    [9] WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37(20): 4702-4708.
    [10] ROCCARO P, YAN M, KORSHIN G V. Use of log-transformed absorbance spectra for online monitoring of the reactivity of natural organic matter[J]. Water Research, 2015, 84: 136-143.
    [11] HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnology and Oceanography, 2008, 53(3): 955-969.
    [12] WENK J, AESCHBACHER M, SALHI E, et al. Chemical oxidation of dissolved organic matter by chlorine dioxide, chlorine, and ozone: effects on its optical and antioxidant properties[J]. Environmental Science & Technology, 2013, 47(19): 11147-11156.
    [13] KORSHIN G V, LI C W, BENJAMIN M M. Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory[J]. Water Research, 1997, 31(7): 1787-1795.
    [14] SUMMERS R S, CORNEL P K, ROBERTS P V. Molecular size distribution and spectroscopic characterization of humic substances[J]. Science of the Total Environment, 1987, 62: 27-37.
    [15] PICCOLO A, ZACCHEO P, GENEVINI P G. Chemical characterization of humic substances extracted from organic-waste-amended soils[J]. Bioresource Technology, 1992, 40(3): 275-282.
    [16] CHIN Y P, AIKEN G, O'LOUGHLIN E. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances[J]. Environmental Science & Technology, 1994, 28(11): 1853-1858.
    [17] CHEN Y, SENESI N, SCHNITZER M. Information provided on humic substances by E4/E6 ratios[J]. Soil science Society of America Journal, 1977, 41(2): 352-358.
    [18] SENESI N, MIANO T M, PROVENZANO M R, et al. Spectroscopic and compositional comparative characterization of IHSS reference and standard fulvic and humic acids of various origin[J]. Science of the Total Environment, 1989, 81: 143-156.
    [19] KORSHIN G V. Development of differential UV spectroscopy for DBP monitoring[M]. American Water Works Association, 2002.
    [20] BEAUCHAMP N, LAFLAMME O, SIMARD S, et al. Relationships between DBP concentrations and differential UV absorbance in full-scale conditions[J]. Water Research, 2018, 131: 110-121.
    [21] KORSHIN G V, CHANG H S. Spectroscopic studies of the roles of distinct chromophores in NOM chlorination and DBP formation[M]. American Water Works Association, 2008, 158-171.
    [22] BAGHOTH S A, SHARMA S K, AMY G L. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC[J]. Water Research, 2011, 45(2): 797-809.
    [23] LYON B A, CORY R M, WEINBERG H S. Changes in dissolved organic matter fluorescence and disinfection byproduct formation from UV and subsequent chlorination/chloramination[J]. Journal of Hazardous Materials, 2014, 264: 411-419.
    [24] MURPHY K R, STEDMON C A, WAITE T D, et al. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy[J]. Marine Chemistry, 2008, 108(1): 40-58.
    [25] STEDMON C A, MARKAGER S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis[J]. Limnology and Oceanography, 2005, 50(2): 686-697.
    [26] STEDMON C A, MARKAGER S, BRO R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry, 2003, 82(3): 239-254.
    [27] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346.
    [28] YAMASHITA Y, TANOUE E. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids[J]. Marine Chemistry, 2003, 82(3): 255-271.
    [29] PEIRIS R H, HALLE C, BUDMAN H, et al. Identifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices[J]. Water Research, 2010, 44(1): 185-194.
    [30] ŚWIETLIK J, DABROWSKA A, RACZYK S U, et al. Reactivity of natural organic matter fractions with chlorine dioxide and ozone[J]. Water Research, 2004, 38(3): 547-558.
    [31] ALLPIKE B P, HEITZ A, JOLL C A, et al. Size exclusion chromatography to characterize DOC removal in drinking water treatment[J]. Environmental Science & Technology, 2005, 39(7): 2334-2342.
    [32] QIANG Z, CAO F, LING W, et al. Effective inhibition of bromate formation with a granular molecular sieve catalyst Ce-MCM-48 during ozonation: Pilot-scale study[J]. Journal of Environmental Engineering, 2012, 139(2): 235-240.
  • 加载中
计量
  • 文章访问数:  1654
  • HTML全文浏览数:  1615
  • PDF下载数:  93
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-04-09
  • 刊出日期:  2019-02-15
柳婷, 杨海燕, 董慧峪, 强志民, 李翼. 饮用水处理过程中溶解性有机物表征方法的研究进展[J]. 环境化学, 2019, 38(2): 263-273. doi: 10.7524/j.issn.0254-6108.2018040906
引用本文: 柳婷, 杨海燕, 董慧峪, 强志民, 李翼. 饮用水处理过程中溶解性有机物表征方法的研究进展[J]. 环境化学, 2019, 38(2): 263-273. doi: 10.7524/j.issn.0254-6108.2018040906
LIU Ting, YANG Haiyan, DONG Huiyu, QIANG Zhimin, LI Yi. Characterization methods of dissolved organic matter in drinking water treatment[J]. Environmental Chemistry, 2019, 38(2): 263-273. doi: 10.7524/j.issn.0254-6108.2018040906
Citation: LIU Ting, YANG Haiyan, DONG Huiyu, QIANG Zhimin, LI Yi. Characterization methods of dissolved organic matter in drinking water treatment[J]. Environmental Chemistry, 2019, 38(2): 263-273. doi: 10.7524/j.issn.0254-6108.2018040906

饮用水处理过程中溶解性有机物表征方法的研究进展

  • 1.  北京建筑大学城市雨水系统与水环境省部共建教育部重点实验室, 中-荷未来污水处理技术研发中心, 北京, 100044;
  • 2.  中国科学院生态环境研究中心, 饮用水科学与技术重点实验室, 北京, 100085
基金项目:

国家自然科学基金(51525806),水体污染控制与治理科技重大专项(2017ZX07207-004),十三五国家重点研发计划(2017YFF0211703)和北京建筑大学研究生创新项目(PG2018044)资助

摘要: 溶解性有机物(DOM)结构、组分复杂,传统水处理工艺(混凝、沉淀、过滤、消毒)、深度处理工艺等对DOM去除有限,在消毒过程中可能生成消毒副产物.DOM的结构、组分影响其在饮用水处理过程中的去除效果.为了深入了解DOM在饮用水处理过程中的结构、形态变化,需采用多种检测方法对其变化进行表征.本文围绕DOM在不同饮用水处理工艺中的分子量、馏分、芳香性及荧光组分等性质的变化,综述了当前饮用水研究较为广泛的预处理分级(物理分级-超滤膜过滤、化学分级-树脂吸附)、紫外-可见吸收光谱、三维荧光光谱等表征方法的研究进展,对不同表征方法的优点及局限性进行了详细探讨,以期为准确评估水处理过程中DOM的变化提供科学依据.

English Abstract

参考文献 (32)

返回顶部

目录

/

返回文章
返回