磷胁迫对高原湿地浮水植物大薸根系分泌物的影响

张建聪, 赵洋毅, 段旭, 梁小喧. 磷胁迫对高原湿地浮水植物大薸根系分泌物的影响[J]. 环境化学, 2019, 38(2): 385-394. doi: 10.7524/j.issn.0254-6108.2018041202
引用本文: 张建聪, 赵洋毅, 段旭, 梁小喧. 磷胁迫对高原湿地浮水植物大薸根系分泌物的影响[J]. 环境化学, 2019, 38(2): 385-394. doi: 10.7524/j.issn.0254-6108.2018041202
ZHANG Jiancong, ZHAO Yangyi, DUAN Xu, LIANG Xiaoxuan. Effects of phosphorus stress on root exudates of floating plant pistia stratiotes in plateau wetlands[J]. Environmental Chemistry, 2019, 38(2): 385-394. doi: 10.7524/j.issn.0254-6108.2018041202
Citation: ZHANG Jiancong, ZHAO Yangyi, DUAN Xu, LIANG Xiaoxuan. Effects of phosphorus stress on root exudates of floating plant pistia stratiotes in plateau wetlands[J]. Environmental Chemistry, 2019, 38(2): 385-394. doi: 10.7524/j.issn.0254-6108.2018041202

磷胁迫对高原湿地浮水植物大薸根系分泌物的影响

  • 基金项目:

    国家自然科学基金(31760149,31560233)资助

Effects of phosphorus stress on root exudates of floating plant pistia stratiotes in plateau wetlands

  • Fund Project: Supported by the National Natural Science Foundation of China (31760149,31560233)
  • 摘要: 目前湿地水体富营养化越来越严重,其自净能力逐渐下降.通过研究湿地典型浮水植物大薸根系分泌物在磷胁迫下的适应机制,以期为高原湿地污染修复的根际调控措施提供科学依据.实验采用营养液水培方式,研究不同磷浓度胁迫对大薸根系分泌物的影响.结果表明,大薸根系分泌物主要有烷烃、酯、醇、胺、苯和酸类化合物,无磷处理分泌物中烷烃类、酸类和胺类的相对含量较大,分别占总检出面积的41.02%、24.74%和12.11%,其中三类化合物中分泌量最多的物质分别为环戊硅氧烷8.47%,邻苯二甲酸20%,萘胺6.39%;在磷胁迫下,大薸根系分泌物的种类和对应的相对含量差异较大且分泌物的种类逐渐减少,其中邻苯二甲酸的含量在每一种胁迫条件下相对含量均较高;磷胁迫下的大薸根系分泌物有机酸总的相对含量均高于无磷胁迫状态,且随着磷浓度的增加,有机酸的种类和相对含量减少;邻苯二甲酸、苯二羧酸和环己硅氧烷在6种磷胁迫下的根系分泌物中相对含量显著差异且随着磷浓度的增加均出现先增加后减少的变化趋势;磷胁迫浓度与邻苯二甲酸间有极显著的负相关关系,与苯二羧酸存在显著的负相关关系,其中邻苯二甲酸与苯二羧酸间存在极显著的正相关关系.本研究表明磷胁迫下大薸根系增加邻苯二甲酸的分泌是响应环境胁迫的一种重要机制.
  • 加载中
  • [1] BEUSEKOM J E E V. Eutrophication[J]. Microbiological Aspects of Pollution Control, 2018, 214(1):169-184.
    [2] 秦伯强, 高光, 朱广伟,等. 湖泊富营养化及其生态系统响应[J]. 科学通报, 2013, 58(10):855-864.

    QING B Q, GAO G, ZHU G W, et al. Lake eutrophication and its ecosystem response[J]. Science Bulletin, 2013, 58(10):855-864(in Chinese).

    [3] 李辉, 潘学军, 史丽琼,等. 湖泊内源氮磷污染分析方法及特征研究进展[J]. 环境化学, 2011, 30(1):281-292.

    LI H, PAN X J, SHI L Q, et al. Progress in analysis methods and characteristics of source nitrogen and phosphorus pollution in lakes[J]. Environmental Chemistry, 2011, 30(1):281-292(in Chinese).

    [4] 周坤朋, 刘阳春, 王崇臣. 北京什刹海区域水体富营养化时空演变特征分析[J]. 环境化学, 2016, 35(4):703-712.

    ZHOU K P, LIU Y C, WANG C C. Characteristics of temporal and spatial evolution of water eutrophication in shichahai region of Beijing[J]. Environmental Chemistry, 2016, 35(4):703-712(in Chinese).

    [5] 唐朝春, 吴庆庆, 段先月,等. 利用吸附法处理废水中磷酸盐的研究进展[J]. 长江科学院院报, 2018, 35(4):18-23.

    TANG C C, WU Q Q, DUAN X Y, et al. Research progress of treating phosphate in wastewater by adsorption[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(4):18-23(in Chinese).

    [6] TANG X, GAO G, CHAO J, et al. Dynamics of organic aggregate associated bacterial communities and related environmental factors in Lake Taihu, a large eutrophic shallow lake in China[J]. Limnology & Oceanography, 2010, 55(2):469-480.
    [7] 于洋, 张民, 钱善勤,等. 云贵高原湖泊水质现状及演变[J]. 湖泊科学, 2010, 22(6):820-828.

    YU Y, ZHANG M, QIAN S Q, et al. Water quality status and evolution of lakes in Yunnan-Guizhou Plateau[J]. Journal of Lake Science, 2010, 22(6):820-828(in Chinese).

    [8] 程璞, 张慧, 陈健. 进水碳负荷浓度对垂直潜流式人工湿地中植物根系微生物动态的影响[J]. 环境工程学报, 2014, 8(5):2006-2012.

    CHENG P, ZHANG H, CHEN J. Effect of influent carbon loading concentration on microbial dynamics of plant roots in vertical subsurface constructed wetlands[J]. Chinese Journal of Environmental Engineering, 2014, 8(5):2006-2012(in Chinese).

    [9] YOU H L, XU L G, JIANG J H, et al. Research progress of growth dynamics and environmental adaptability of roots of wetland plants[J]. Resources & Environment in the Yangtze Basin, 2013(Z1):52-58.
    [10] 伍婵翠, 何彦琴, 何彩娇,等. 湿地植物李氏禾根分泌物对难溶性铬的活化作用[J]. 泉州师范学院学报, 2016, 34(6):1-4.

    WU C C, HE Y Q, HE C J, et al. The activation of insoluble chromium in the root exudates of wetland plant[J]. Journal of Quanzhou Normal University, 2016, 34(6):1-4(in Chinese).

    [11] ZHAO K, ZHOU B, MA W Z, et al. The influence of different environmental stresses on root-exuded organic acids: A review[J]. Soils, 2016, 48(2):235-240.
    [12] 潘声旺, 袁馨, 刘灿,等. 苯并[α]芘对不同修复潜力羊茅属植物的根系分泌物中几种低分子量有机物的影响[J]. 植物生态学报, 2016, 40(6):604-614.

    PAN S W,YUAN X, LIU C, et al. Effects of benzo[α]pyrene on several low-molecular-weight organic compounds in the root exudates of different repair potential Festuca plants[J]. Chinese Journal of Plant Ecology, 2016, 40(6):604-614(in Chinese).

    [13] 旷远文, 温达志, 钟传文,等. 根系分泌物及其在植物修复中的作用[J]. 植物生态学报, 2003, 27(5):709-717.

    KUANG Y W, WEN D Z, ZHONG C W, et al. Root exudates and their role in phytoremediation [J]. Chinese Journal of Plant Ecology, 2003, 27(5):709-717(in Chinese).

    [14] GARDNER W K. The acquisition of phosphorus by Lupinus albus L. Ⅲ. The probable mechanisms by which phosphorus movement in the soil/roots interface in enhanced[J]. Plant & Soil, 1983, 70(3):391-402.
    [15] 肖晓明, 刘军生, 周程,等. 不同磷水平下澳洲坚果幼苗根系分泌物的差异[J]. 热带作物学报, 2014, 35(2):261-265.

    XIANG X M, LIU J S, ZHOU C, et al. Differences in root exudates of macadamia seedlings with different phosphorus levels[J]. Journal of Tropical Crops, 2014, 35(2):261-265(in Chinese).

    [16] 梁永书, 周军杰, 南文斌,等. 水稻根系研究进展[J]. 植物学报, 2016, 51(1):98-106.

    LIANG Y S, ZHOU J J, NAN W B, et al. The research progress of rice root system[J]. Acta Botanica Sinica, 2016, 51(1):98-106(in Chinese).

    [17] 王小平, 肖肖, 唐天文,等. 连香树人工林根系分泌物输入季节性变化及其驱动的根际微生物特性研究[J]. 植物研究, 2018, 38(1):47-55.

    WANG X P, XIAO X, TANG T W, et al. Seasonal changes in root exudates and their rhizosphere microorganism properties driven by caragana macrophylla plantation[J]. Plant Research, 2018, 38(1):47-55(in Chinese).

    [18] 邵东华, 任琴, 宁心哲,等. 油松和虎榛子不同林型根系分泌物组分及化感效应[J]. 浙江农林大学学报, 2011, 28(2):333-338.

    SHAO D H, REN Q, NING X Z, et al. Root canal composition and allelopathic effects of different forest types of Pinus tabulaeformis and Radix harrularis[J]. Journal of Zhejiang A&F University, 2011, 28(2):333-338(in Chinese).

    [19] 于姣妲, 殷丹阳, 吴佳美,等. 林木低磷胁迫适应机制研究进展[J]. 世界林业研究, 2017, 30(1):18-23.

    YU J D, YING D Y, WU J M, et al. Research progress on adaptation mechanism of low phosphorus stress in forest trees[J]. World Forestry Research, 2017, 30(1):18-23(in Chinese).

    [20] 李德华, 向春雷, 姜益泉,等. 低磷胁迫下水稻不同品种根系有机酸分泌的差异[J]. 中国农学通报, 2005, 21(11):186-188.

    LI D H, XIANG C L, JIANG,Y Q, et al. Differences of organic acid secretion in roots of different Rice varieties under low phosphorus stress[J]. Chinese Agricultural Science Bulletin, 2005, 21(11):186-188(in Chinese).

    [21] ZHOU J, WANG X, DENG Y, et al. Effects of phosphorus stress on the root morphology and root exudates in different sugar beet genotypes[J]. Chinese Agricultural Science Bulletin, 2011(2):157-161.
    [22] 马若囡, 刘庆, 李欢,等. 缺磷胁迫对甘薯前期根系发育及养分吸收的影响[J]. 华北农学报, 2017, 32(5):171-176.

    MA R Y, LIU Q, LI H, et al. Effect of phosphorus deficiency stress on early root system development and nutrient absorption of Sweet Potato[J]. North China Agricultural Journal, 2017, 32(5):171-176(in Chinese).

    [23]
    [24] 陆松柳, 胡洪营, 孙迎雪,等. 3种湿地植物在水培条件下的生长状况及根系分泌物研究[J]. 环境科学, 2009, 30(7):1901-1905.

    LU L S, HU H Y, SUN Y X, et al. Study on growth and root exudates of three kinds of wetland plants in hydroponic culture[J]. Environmental Science, 2009, 30(7):1901-1905(in Chinese).

    [25] 黄永芳, 杨秋艳, 张太平,等. 水培条件下两种植物根系分泌特征及其与污染物去除的关系[J]. 生态学杂志, 2014, 33(2):373-379.

    HUANG Y F, YANG Q Y, ZHANG T P, et al. Root exudation characteristics of two plants and their relationship with pollutant removal under hydroponics conditions[J]. Chinese Journal of Ecology, 2014, 33(2): 373-379(in Chinese).

    [26] 李猛, 马旭洲, 王武. 大薸对水体氮磷去除效果的初步研究[J]. 长江流域资源与环境, 2012, 21(9):1137-1142.

    LI M, MA X Z, WANG W. A preliminary study on the removal of nitrogen and phosphorus from water by Pistia stratiotes[J]. Yangtze River Basin Resources and Environment, 2012, 21(9):1137-1142(in Chinese).

    [27] VICTOR K K,SEKA Y, NORBERT K K, et al. Phytoremediation of wastewaters toxicity using water hyacinth (Eichhornia crassipes)and water lettuce (Pistia stratiotes) [J]. International Journal of Phytoremediation, 2016, 18(10):949-955.
    [28] HORCHANI F, GALLUSCI P, BALDET P, et al. Prolonged root hypoxia induces ammonium accumulation and decreases the nutritional quality of tomato fruits[J]. Journal of Plant Physiology, 2008, 165(13):1352-1359.
    [29] 陈佰岩. 磷胁迫条件下小麦蚕豆根系分泌物对红壤磷的活化[D]. 昆明: 云南农业大学, 2009, 24(6):869-875.

    CHENG B Y. Activation of phosphorus in red soil by root exudates of Wheat and Broad bean under phosphorus stress[D]. Kunming: Yunnan Agricultural University, 2009, 24(6):869-875.(in Chinese).

    [30]
    [31] 刘婷婷, 秦宇婷, 吴玉莹,等. 溶剂法提取分蘖葱头有机硫化合物及其GC-MS分析[J]. 食品科学, 2017, 38(12):151-156.

    LIU T T,QING Y T, WU Y Y, et al, Extraction of organic sulfur compounds from onion seed by solvent extraction and its GC-MS analysis[J]. Food Science, 2017, 38(12):151-156(in Chinese).

    [32] HUIYONG Y U, SHEN G, GAO X. Determination of tobacco root exudates by GC-MS[J]. Acta Tabacaria Sinica, 2013, 19(4):64-72.
    [33] 熊君, 林辉锋, 李振方,等. 旱直播条件下强弱化感潜力水稻根际微生物的群落结构[J]. 生态学报, 2012, 32(19):6100-6109.

    XIONG J, LIN H F, LI Z F, et al. Microbial community structure in the rhizosphere of Rice with strong or weak allelopathic potential under live logging conditions[J]. Chinese Journal of Ecology, 2012, 32(19):6100-6109(in Chinese).

    [34] 张红, 高亚军, 安蓉. 油菜根系分泌物的GC-MS检测方法研究[J]. 农业资源与环境学报, 2014, 31(3):290-295.

    ZHANG H, GAO Y J, AN R. Study on the detection of root exudates in Rape by GC-MS[J]. Journal of Agricultural Resources and Environment, 2014, 31(3):290-295(in Chinese).

    [35] 刘欣宇, 陈歆, 吴琳,等. 木榄幼苗根系分泌物的GC-MS分析[J]. 热带作物学报, 2016, 37(4):835-843.

    LIU X Y, CHNE X, WU L, et al. Analysis of root exudates of broussonetia officinalis seedlings by GC-MS[J]. Journal of Tropical Crops, 2016, 37(4):835-843(in Chinese).

    [36] 程智慧, 徐鹏. 百合根系分泌物的GC-MS鉴定[J]. 西北农林科技大学学报:自然科学版, 2012, 40(9):202-208.

    CHENG Z H, XU P.Identification of lily root exudates by GC-MS[J]. Journal of Northwest A&F University: Natural Science Edition, 2012, 40(9):202-208(in Chinese).

    [37] 刘苹, 赵海军, 万书波,等. 连作对花生根系分泌物化感作用的影响[J]. 中国生态农业学报, 2011, 19(3):639-644.

    LIU P, ZHAO H J, WAN S B, et al. Effects of continuous cropping on allelopathy of peanut root exudates[J]. Chinese Journal of Eco-Agriculture, 2011, 19(3):639-644(in Chinese).

    [38] WU F Y, CHUANG A K, TAM N F, et al. Root exudates of wetland plants influenced by nutrient status and types of plant cultivation[J]. International Journal of Phytoremediation, 2012, 14(6):543-553.
    [39]
    [40] 陈锋, 孟永杰, 帅海威,等. 植物化感物质对种子萌发的影响及其生态学意义[J]. 中国生态农业学报, 2017, 25(1):36-46.

    CHENG F, MENG Y J, SHUAI H W, et al. Effects of plant allelochemicals on seed germination and their ecological significance[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1):36-46(in Chinese).

    [41] QIN L, JIANG H, TIAN J, et al. Rhizobia enhance acquisition of phosphorus from different sources by soybean plants[J]. Plant & Soil, 2011, 349(1-2):25-36.
    [42] BUER C S,LMIN N, DJORDJEVIC M A, et al. Flavonoids: New roles for old molecules[J]. Plant Journal (English Version), 2010, 52(1):98-111.
    [43] WANG X X, LIU Y, SHAO C L, et al. Allelopathic sensitivity of extracts of juvenile eucalyptus urophylla from five economic plants[J]. Scientia Silvae Sinicae, 2011, 47(11):188-193.
    [44] ZHAO K, WU Y. Rhizosphere calcareous soil P-extraction at the expense of organic carbon from root-exuded organic acids induced by phosphorus deficiency in several plant species[J]. Soil Science & Plant Nutrition, 2014, 60(5):640-650.
    [45] 张振海, 陈琰, 韩胜芳,等. 低磷胁迫对大豆根系生长特性及分泌H+和有机酸的影响[J]. 中国油料作物学报, 2011, 33(2):135-140.

    ZHANG Z H, CHEN Y, HAN S F, et al. Effects of low-p stress on root growth characteristics and secretion of H+ and organic acids in soybean[J]. Chinese Journal of Oil Crops, 2011, 33(2):135-140(in Chinese).

  • 加载中
计量
  • 文章访问数:  1506
  • HTML全文浏览数:  1490
  • PDF下载数:  35
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-04-12
  • 刊出日期:  2019-02-15
张建聪, 赵洋毅, 段旭, 梁小喧. 磷胁迫对高原湿地浮水植物大薸根系分泌物的影响[J]. 环境化学, 2019, 38(2): 385-394. doi: 10.7524/j.issn.0254-6108.2018041202
引用本文: 张建聪, 赵洋毅, 段旭, 梁小喧. 磷胁迫对高原湿地浮水植物大薸根系分泌物的影响[J]. 环境化学, 2019, 38(2): 385-394. doi: 10.7524/j.issn.0254-6108.2018041202
ZHANG Jiancong, ZHAO Yangyi, DUAN Xu, LIANG Xiaoxuan. Effects of phosphorus stress on root exudates of floating plant pistia stratiotes in plateau wetlands[J]. Environmental Chemistry, 2019, 38(2): 385-394. doi: 10.7524/j.issn.0254-6108.2018041202
Citation: ZHANG Jiancong, ZHAO Yangyi, DUAN Xu, LIANG Xiaoxuan. Effects of phosphorus stress on root exudates of floating plant pistia stratiotes in plateau wetlands[J]. Environmental Chemistry, 2019, 38(2): 385-394. doi: 10.7524/j.issn.0254-6108.2018041202

磷胁迫对高原湿地浮水植物大薸根系分泌物的影响

  • 1. 西南林业大学 生态与水土保持学院, 昆明, 650224
基金项目:

国家自然科学基金(31760149,31560233)资助

摘要: 目前湿地水体富营养化越来越严重,其自净能力逐渐下降.通过研究湿地典型浮水植物大薸根系分泌物在磷胁迫下的适应机制,以期为高原湿地污染修复的根际调控措施提供科学依据.实验采用营养液水培方式,研究不同磷浓度胁迫对大薸根系分泌物的影响.结果表明,大薸根系分泌物主要有烷烃、酯、醇、胺、苯和酸类化合物,无磷处理分泌物中烷烃类、酸类和胺类的相对含量较大,分别占总检出面积的41.02%、24.74%和12.11%,其中三类化合物中分泌量最多的物质分别为环戊硅氧烷8.47%,邻苯二甲酸20%,萘胺6.39%;在磷胁迫下,大薸根系分泌物的种类和对应的相对含量差异较大且分泌物的种类逐渐减少,其中邻苯二甲酸的含量在每一种胁迫条件下相对含量均较高;磷胁迫下的大薸根系分泌物有机酸总的相对含量均高于无磷胁迫状态,且随着磷浓度的增加,有机酸的种类和相对含量减少;邻苯二甲酸、苯二羧酸和环己硅氧烷在6种磷胁迫下的根系分泌物中相对含量显著差异且随着磷浓度的增加均出现先增加后减少的变化趋势;磷胁迫浓度与邻苯二甲酸间有极显著的负相关关系,与苯二羧酸存在显著的负相关关系,其中邻苯二甲酸与苯二羧酸间存在极显著的正相关关系.本研究表明磷胁迫下大薸根系增加邻苯二甲酸的分泌是响应环境胁迫的一种重要机制.

English Abstract

参考文献 (45)

返回顶部

目录

/

返回文章
返回