水稻根系抗氧化酶及其同工酶对酸雨胁迫的响应

郭小境, 王锦莹, 任潇茜, 陈微懿, 陶倩文, 邓媛, 梁婵娟. 水稻根系抗氧化酶及其同工酶对酸雨胁迫的响应[J]. 环境化学, 2019, 38(2): 377-384. doi: 10.7524/j.issn.0254-6108.2018031901
引用本文: 郭小境, 王锦莹, 任潇茜, 陈微懿, 陶倩文, 邓媛, 梁婵娟. 水稻根系抗氧化酶及其同工酶对酸雨胁迫的响应[J]. 环境化学, 2019, 38(2): 377-384. doi: 10.7524/j.issn.0254-6108.2018031901
GUO Xiaojing, WANG Jinying, REN Xiaoqian, CHEN Weiyi, TAO Qianwen, DENG Yuan, LIANG Chanjuan. Response of antioxidant enzyme activities and isozyme patten in rice roots to acid rain stress[J]. Environmental Chemistry, 2019, 38(2): 377-384. doi: 10.7524/j.issn.0254-6108.2018031901
Citation: GUO Xiaojing, WANG Jinying, REN Xiaoqian, CHEN Weiyi, TAO Qianwen, DENG Yuan, LIANG Chanjuan. Response of antioxidant enzyme activities and isozyme patten in rice roots to acid rain stress[J]. Environmental Chemistry, 2019, 38(2): 377-384. doi: 10.7524/j.issn.0254-6108.2018031901

水稻根系抗氧化酶及其同工酶对酸雨胁迫的响应

  • 基金项目:

    国家自然科学基金(31370517),江苏省自然科学基金(BK20161131)和省级创新项目资助

Response of antioxidant enzyme activities and isozyme patten in rice roots to acid rain stress

  • Fund Project: Supported by the National Natural Science Foundation of China (31370517), the Jiangsu Province Natural Science Foundation (BK20161131) and Provincial Innovation Project
  • 摘要: 为进一步认识植物对酸雨胁迫的适应性机制,本文选择具有较强耐酸性作物水稻为试材,研究酸雨(AR)(pH 3.5和pH 2.5)对水稻根系抗氧化酶活性及其同工酶组成的影响.发现AR胁迫5 d后,pH 3.5组水稻幼苗根系中SOD(超氧化物歧化酶)、CAT(过氧化氢酶)、POD(过氧化物酶)活性均上升,且同工酶谱条带均增粗变亮,H2O2、O2·-、MDA含量和质膜透性均增加,根长、根表面积、根体积、根冠比均减小;而pH 2.5组根系中虽SOD、CAT活性上升但POD活性下降,其中SOD、CAT同工酶谱条带变粗变亮且较pH 3.5组更粗更亮而POD 3、POD 4、POD 5条带明显变细变暗,O2·-、H2O2、MDA含量和质膜透性与根系生长各指标降幅均大于pH 3.5组.恢复5 d后,pH3.5组下水稻根系中SOD、CAT、POD、H2O2、O2·-、MDA含量和质膜透性恢复至对照水平,而pH 2.5引发的活性氧伤害未恢复.因此,AR胁迫下水稻幼苗根系SOD、CAT、POD同工酶表达量增加促使活性增强有助于清除AR诱发的活性氧积累,增强植物对酸雨的耐受性,调控能力受酸雨强度限制.
  • 加载中
  • [1] 张新民,柴发合,王淑兰,等.中国酸雨研究现状[J].环境科学研究,2010,23(5):527-532.

    ZAHNG X M, CHAI F H, WANG S L, et al. Research status of acid rain in China[J]. Environmental Science Research. 2010,23(5):527-532(in Chinese).

    [2] 涂勇.攀枝花市酸雨污染特征及防治措施的研究[D].成都:四川大学,2005. TU Y. Acid rain pollution characteristics and control measures in panzhihua city[D]. Chengdu: Sichuan University,2005(in Chinese).
    [3] 冯颖竹,陈惠阳,余土元,等.中国酸雨及其对农业生产影响的研究进展[J].中国农学通报,2012,28(11):306-311.

    FEN Y Z, CHEN H Y, YU T Y, et al. Research progress of acid rain and its impact on agricultural production in China[J]. Chinese Agricultural Science Bulletin, 2012,28(11):306-311(in Chinese).

    [4] 李志国,姜卫兵,翁忙玲,等.模拟酸雨对木兰科树种叶片膜脂过氧化和抗氧化系统的影响[J].生态环境学报,2007,16(3):779-784.

    LI Z G, JIANG W B, WEN M L, et al. Effects of simulated acid rain on membrane lipid peroxidation and antioxidant system in leaves of magnoliaceae[J]. Journal of Ecology and Environment,2007,16(3):779-784(in Chinese).

    [5] 陈家松.模拟酸雨胁迫对夏腊梅幼苗生理,生长特性及土壤微生物多样性影响[D].上海:上海师范大学,2016. CHEN J S. Effects of simulated acid rain stress on physiological characteristics, growth characteristics and soil microbial diversity of shaley[D]. Shanghai:Shanghai Normal University,2016(in Chinese).
    [6] 宋莉英,柯展鸿,孙兰兰,等.模拟酸雨对3种菊科入侵植物光合特性的影响[J].植物学报,2013,48(2):160-167.

    SONG L Y, KE Z H, SUN L L, et al.Effect of simulated acid rain on photosynthetic characteristics of three compositae invasive plants[J].Plant Journal,2013,48(2):160-167(in Chinese).

    [7] REN X,ZHU J,LIU H,et al.Response of antioxidative system in rice (Oryza sativa) leaves to simulated acid rain stress[J].Ecotoxicology & Environmental Safety,2018,148:851-856.
    [8] 任潇茜,梁婵娟.模拟酸雨对水稻叶片抗氧化系统影响的时间效应[J].安全与环境学报,2017,17(4):1609-1613.

    REN X Q, LIANG C J. Effects of simulated scid rain on antioxidant system in rice leaves[J].Journal of Safety and Environment,2017,17(4):1609-1613(in Chinese).

    [9] 魏金卓,梁婵娟.模拟酸雨对水稻叶片质膜H+-ATPase活性与胞内Ca2+浓度的影响[J].环境科学学报,2014,34(2):532-536.

    WEI J Z, LIANG C J. Effects of simulated acid rain on plasma membrane H+-ATPase activity and intracellular Ca2+ concentration in rice leaves[J].Journal of Environmental Science,2014,34(2):532-536(in Chinese).

    [10] ZHU Y Y,DI T J,XU G H, et al. Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition[J].Plant Cell & Environment,2009,32(10):1428-1440.
    [11] Cho U,Park J.Mercury-induced oxidative stress in tomato seedlings [J].Plant Science An International Journal of Experimental Plant Biology,2000,156(1):1-2.
    [12] 谢晓红.植物抗氧化酶系统研究进展[J].化工管理,2015(32):99-100. XIE X H. Research progress of plant antioxidant enzyme system[J]. Chemical Management,2015

    (32):99-100(in Chinese).

    [13] 孙彩霞,刘志刚,荆艳东.水分胁迫对玉米叶片关键防御酶系活性及其同工酶的影响[J].玉米科学,2003,11(1):63-66.

    SUN C X, LIU Z G, JIN Y D. Effects of water stress on activities of key defense enzymes and their isozymes in maize leaves. [J].Corn Science,2003,11(1):63-66(in Chinese).

    [14] 吴玺,梁婵娟.模拟酸雨对水稻根系激素含量与生长的影响[J].环境化学,2016,35(3):568-574.

    WU X, LIANG C J. Effect of simulated acid rain on root hormone content and growth of rice[J]. Environmental Chemistry,2016,35(3):568-574(in Chinese).

    [15] 吕霞,梁婵娟.模拟酸雨对水稻叶片质膜H+-ATPase与质膜过氧化的影响[J].安全与环境学报,2013,13(6):1-4.

    LV X, LIANG C J. Effects of simulated acid rain on plasma membrane H+-ATPase and plasma membrane peroxidation in rice leaves[J].Journal of Safety and Environment,2013,13(6):1-4(in Chinese).

    [16] 周青,黄晓华.稀土元素La对酸雨损伤蜡梅的影响[J].生态学杂志,1997(6):59-61. ZHOU Q, HUANG X H. Effects of rare earth La on the acid rain damage of Brassica chinensis[J]. Journal of Ecology,1997

    (6):59-61(in Chinese).

    [17] 卜津津,苏垒,吕霞,等.模拟酸雨对水稻叶片质膜H+-ATPase活性与矿质元素含量的影响[J].环境科学学报,2015, 35(9):3020-3024.

    BU J J, SU L, LV X, et al. Effects of simulated acid rain on plasma membrane H+-ATPase activity and mineral element content in rice leaves[J].Journal of Environmental Science,2015,35(9):3020-3024(in Chinese).

    [18] LIANG C, GE Y, SU L, et al. Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain[J]. Environmental Science and Pollution Research International, 2015,22(1):535-545.
  • 加载中
计量
  • 文章访问数:  1698
  • HTML全文浏览数:  1688
  • PDF下载数:  58
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-03-19
  • 刊出日期:  2019-02-15
郭小境, 王锦莹, 任潇茜, 陈微懿, 陶倩文, 邓媛, 梁婵娟. 水稻根系抗氧化酶及其同工酶对酸雨胁迫的响应[J]. 环境化学, 2019, 38(2): 377-384. doi: 10.7524/j.issn.0254-6108.2018031901
引用本文: 郭小境, 王锦莹, 任潇茜, 陈微懿, 陶倩文, 邓媛, 梁婵娟. 水稻根系抗氧化酶及其同工酶对酸雨胁迫的响应[J]. 环境化学, 2019, 38(2): 377-384. doi: 10.7524/j.issn.0254-6108.2018031901
GUO Xiaojing, WANG Jinying, REN Xiaoqian, CHEN Weiyi, TAO Qianwen, DENG Yuan, LIANG Chanjuan. Response of antioxidant enzyme activities and isozyme patten in rice roots to acid rain stress[J]. Environmental Chemistry, 2019, 38(2): 377-384. doi: 10.7524/j.issn.0254-6108.2018031901
Citation: GUO Xiaojing, WANG Jinying, REN Xiaoqian, CHEN Weiyi, TAO Qianwen, DENG Yuan, LIANG Chanjuan. Response of antioxidant enzyme activities and isozyme patten in rice roots to acid rain stress[J]. Environmental Chemistry, 2019, 38(2): 377-384. doi: 10.7524/j.issn.0254-6108.2018031901

水稻根系抗氧化酶及其同工酶对酸雨胁迫的响应

  • 1.  江苏省厌氧生物技术重点实验室, 江南大学环境与土木工程学院, 无锡, 214122;
  • 2.  江苏省水处理技术与材料协同创新中心, 无锡, 214122
基金项目:

国家自然科学基金(31370517),江苏省自然科学基金(BK20161131)和省级创新项目资助

摘要: 为进一步认识植物对酸雨胁迫的适应性机制,本文选择具有较强耐酸性作物水稻为试材,研究酸雨(AR)(pH 3.5和pH 2.5)对水稻根系抗氧化酶活性及其同工酶组成的影响.发现AR胁迫5 d后,pH 3.5组水稻幼苗根系中SOD(超氧化物歧化酶)、CAT(过氧化氢酶)、POD(过氧化物酶)活性均上升,且同工酶谱条带均增粗变亮,H2O2、O2·-、MDA含量和质膜透性均增加,根长、根表面积、根体积、根冠比均减小;而pH 2.5组根系中虽SOD、CAT活性上升但POD活性下降,其中SOD、CAT同工酶谱条带变粗变亮且较pH 3.5组更粗更亮而POD 3、POD 4、POD 5条带明显变细变暗,O2·-、H2O2、MDA含量和质膜透性与根系生长各指标降幅均大于pH 3.5组.恢复5 d后,pH3.5组下水稻根系中SOD、CAT、POD、H2O2、O2·-、MDA含量和质膜透性恢复至对照水平,而pH 2.5引发的活性氧伤害未恢复.因此,AR胁迫下水稻幼苗根系SOD、CAT、POD同工酶表达量增加促使活性增强有助于清除AR诱发的活性氧积累,增强植物对酸雨的耐受性,调控能力受酸雨强度限制.

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回