水源生态净化系统沉积物中营养盐空间分布特征及污染评价

马睿, 李璇, 卞婷婷, 马卫星, 丁成, 杜观超, 高旭. 水源生态净化系统沉积物中营养盐空间分布特征及污染评价[J]. 环境化学, 2019, 38(2): 412-421. doi: 10.7524/j.issn.0254-6108.2018041703
引用本文: 马睿, 李璇, 卞婷婷, 马卫星, 丁成, 杜观超, 高旭. 水源生态净化系统沉积物中营养盐空间分布特征及污染评价[J]. 环境化学, 2019, 38(2): 412-421. doi: 10.7524/j.issn.0254-6108.2018041703
MA Rui, LI Xuan, BIAN Tingting, MA Weixing, DING Cheng, DU Guanchao, GAO Xu. Spatial distribution and pollution assessment of nutrients in the sediments of a water source ecological purification system[J]. Environmental Chemistry, 2019, 38(2): 412-421. doi: 10.7524/j.issn.0254-6108.2018041703
Citation: MA Rui, LI Xuan, BIAN Tingting, MA Weixing, DING Cheng, DU Guanchao, GAO Xu. Spatial distribution and pollution assessment of nutrients in the sediments of a water source ecological purification system[J]. Environmental Chemistry, 2019, 38(2): 412-421. doi: 10.7524/j.issn.0254-6108.2018041703

水源生态净化系统沉积物中营养盐空间分布特征及污染评价

  • 基金项目:

    国家自然科学基金(51608466)和江苏省自然科学基金青年基金项目(BK20160438,BK20160439)资助

Spatial distribution and pollution assessment of nutrients in the sediments of a water source ecological purification system

  • Fund Project: Supported by the Natural Science Foundation of China (51608466) and Natural Science Foundation of Jiangsu Province (BK20160438, BK20160439)
  • 摘要: 对盐龙湖水源生态净化系统预处理区、挺水植物区、沉水植物区及深度净化区沉积物中营养盐内源负荷及氮、磷的形态空间分布特征展开研究,并评价不同单元沉积物营养盐污染状况.结果表明:盐龙湖表层沉积物总氮(TN)、总磷(TP)、有机质(OM)含量范围分别为156.43—1130.00 mg·kg-1、615.23—1580.66 mg·kg-1、5.00%—49.04%.盐龙湖TP含量在预处理单元的沉积物中最高(1508.09 mg·kg-1),在挺水植物区B的沉积物中最低(932.30 mg·kg-1),而TN和OM含量都在挺水植物区A的沉积物中达到顶峰(1126.91 mg·kg-1, 48.89%),在深度净化区的沉积物中最低(272.47 mg·kg-1, 5.23%).闭蓄态磷(Abs-P)的含量占总磷(TP)比例最多(75.3%—82.3%),易解析磷(Exch-P)占TP比例均不超过1%;顺水流方向,铁结合态磷(Fe-P)和铝结合态磷(Al-P)含量呈下降的趋势,而Exch-P和钙磷(Ca-P)呈U字型先减后增.弱酸可提取态氮(WAEF-N)占可转化态氮(TTN)比例最高(45.3%—68.94%),强氧化剂可提取态氮(SOEF-N)占TTN比例最低(10.45%—19.08%),沉积物TTN中各形态氮含量分布次序为弱酸可提取态氮(WAEF-N)>强碱可提取态氮(SAEF-N)>离子交换态氮(IEF-N)>强氧化剂可提取态氮(SOEF-N).通过单一因子标准指数法、综合污染指数、有机氮和有机指数法进行评价,发现在预处理区和挺水植物区A营养盐污染最严重,其他处理单元也有不同程度的污染,深度净化区污染程度最低.
  • 加载中
  • [1] VYMAZAL J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007, 380(1): 48-65.
    [2] SAEED T, SUN G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media[J]. Journal of Environmental Management, 2012, 112: 429-448.
    [3] 贾锐珂,王晓昌,宋佳. 多元组合系统净化富营养化水体的示范工程[J]. 环境工程学报,2018,12(3):975-984.

    JIA R K, WANG X C, SONG J. Demonstration project of eutrophic water purification by a multicomponent system[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 975-984(in Chinese).

    [4] 吴英海, 韩蕊, 林必桂, 等. 复合人工湿地中低浓度有机物的去除及 Monod 模型模拟[J]. 环境工程学报,2013,7(6):2139-2146.

    WU Y H, Han R, Lin B G, et al. Removal effect of low-concentration organic pollutants and simulating with Monod model in hybrid constructed wetland[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2139-2146(in Chinese).

    [5] YE X, WANG A J, CHEN J. Distribution and deposition characteristics of carbon and nitrogen in sediments in a semi-closed bay area, southeast China[J]. Continental Shelf Research, 2014, 90: 133-141.
    [6] AHLGREN J, REITZEL K, BRABANDEREH D, et al. Release of organic P forms from lake sediments[J]. Water Research, 2011, 45(2): 565-572.
    [7] SØNDERGAARD M, JENSEN J P, JEPPESEN E. Role of sediment and internal loading of phosphorus in shallow lakes[J]. Hydrobiologia, 2003, 506-509(1-3): 135-145.
    [8] 刘德鸿, 余居华, 钟继承,等. 太湖流域典型河网水体氮磷负荷及迁移特征[J]. 中国环境科学,2016,36(1):125-132.

    LIU D H, YU J H, ZHONG J C, et al. Characteristics of nitrogen and phosphorus loading and migration in typical river networks in Taihu lake basin[J]. China Environmental Science, 2016, 36(1): 125-132(in Chinese).

    [9] 左倬, 郭萧, 李巍, 等. 盐龙湖工程中试系统去除原水中氮磷效果研究[J]. 中国水利,2013,14(1):33-36.

    ZUO Z, GUO X, LI W, et al. Result of nitrogen and phosphorus elimination with pilot system of Yanlong Lake Project[J]. China Water Resources, 2013, 14(1): 33-36(in Chinese).

    [10] 杨政义. 人工生态湿地对水厂原水水质的净化[J]. 城镇供水,2014,1(1):56-61.

    YANG Z Y. Artificial eco-wetland purification of raw water quality of water plant[J]. City and Town Water Supply, 2014, 1(1): 56-61(in Chinese).

    [11] 左倬, 朱雪诞, 胡伟,等. 盐城蟒蛇河饮用水源原水水质及盐龙湖工程水质净化效果评价[J]. 环境污染与防治,2015,37(5):61-65.

    ZUO Z, ZHU X Y, HU W, et al. Study on the quality characteristics of the raw water of the drinking water source, Mangshe River, Yangcheng and the evaluation of the water quality purification effect of Yanlong Lake project[J]. Environmental Pollution & Control, 2015, 37(5): 61-65(in Chinese).

    [12] 王超, 陈煜权, 蔡丽婧,等. 不同季节大型生态净化工程对原水氮素净化效果[J]. 环境工程学报,2015,9(8):3763-3767.

    WANG C, CHENG Y C, CAI L J, et al. Raw water nitrogen purification efficiency by large-scale ecological purification engineering in different seasons[J]. Chinese Journal of Environmental Engineering, 2015, 9(8): 3763-3767(in Chinese).

    [13] YU J, FAN C, ZHONG J, et al. Evaluation of in situ simulated dredging to reduce internal nitrogen flux across the sediment-water interface in Lake Taihu, China[J]. Environmental Pollution, 2016, 214: 866-877.
    [14] LIU C, ZHONG J, WANG J, et al. Fifteen-year study of environmental dredging effect on variation of nitrogen and phosphorus exchange across the sediment-water interface of an urban lake[J]. Environmental Pollution, 2016, 219: 639-648.
    [15] 王宇, 王宝玲, 彭卫西,等. 石臼漾湿地冬季有机质的可生化性[J]. 环境科学学报,2013,33(10):2774-2785.

    WANG Y, WANG B L, PENG W X, et al. Biodegradability of organic matter in Shijiuyang wetland during winter[J]. Acta Scientiae Circumstantiae, 33(10): 2774-2785(in Chinese).

    [16] 王圣瑞. 湖泊沉积物-水界面过程[M]. 北京:科学出版社,2014. WANG S R. Lake sediment-water interface process[M]. Beijing: Science Press, 2014(in Chinese).
    [17] 邱祖凯,胡小贞,姚程,等. 山美水库沉积物氮磷和有机质污染特征及评价[J]. 环境科学,2016,37(4):1389-1396.

    QIU Z K, HU X Z, YAO C, et al. Pollution Characteristics and Evaluation of Nitrogen, Phosphorus and Organic Matter in Sediments of Shanmei Reservoir in Fujian, China[J]. Environmental Science, 2016, 37(4): 1389-1396(in Chinese).

    [18] 王亚平, 黄廷林, 周子振,等. 金盆水库表层沉积物中营养盐分布特征与污染评价[J]. 环境化学, 2017, 36(3):659-665.

    WANG Y P, HUANG Y L, ZHOU Z Z, et al. Distribution and pollution evaluation of nutrients in surface sediments of Jinpen Reservoir[J]. Environmental Chemistry, 2017, 36(3): 659-665 (in Chinese).

    [19] 杨文焕, 崔亚楠, 李卫平,等. 冰封期湿地沉积物碳、氮、磷分布及污染评价[J]. 环境化学, 2018, 37(2): 287-295.

    YANG W H, CUI Y N, LI W P, et al. Distribution and pollution evaluation of carbon, nitrogen and phosphorus in sediments of lake Nanhai in Baotou City[J]. Environmental Chemistry, 2018, 37(2): 287-295 (in Chinese).

    [20] WANG L, LIANG T. Distribution patterns and dynamics of phosphorus forms in the overlying water and sediment of Dongting Lake[J]. Journal of Great Lakes Research, 2016, 42(3): 565-570.
    [21] XIANG S L, ZHOU W B. Phosphorus forms and distribution in the sediments of Poyang Lake, China[J]. International Journal of Sediment Research, 2011, 26(2): 230-238.
    [22] 潘婷婷,赵雪,袁轶君,等. 三峡水库沉积物不同赋存形态磷的时空分布[J]. 环境科学学报,2016,36(8):2968-2973.

    PAN T T, ZHAO X, YUAN Z J, et al. Spatio-temporal distribution characteristics of different phosphorus forms in sediments from the Three Gorges Reservoir[J]. Acta Scientiae Circumstantiae, 2016, 36(8): 2968-2973(in Chinese).

    [23] 马红波,宋金明,吕晓霞,等. 渤海沉积物中氮的形态及其在循环中的作用[J]. 地球化学,2003,32(1):48-54.

    MA H B, SONG J M, LV X X, et al. Nitrogen forms in sediments of the bo sea and their roles in circulation[J]. Geochemistry, 2003, 32(1): 48-54(in Chinese).

    [24] 吴亚林,李帅东,江俊武,等. 百年来滇池沉积物中不同形态氮分布及埋藏特征[J]. 环境科学,2017,38(2):517-526.

    WU Y L, LI S D, JIANG J W, et al. Distribution and burial characteristics of nitrogen forms in sediment of dianchi lake during last century[J]. Environmental Science, 2017, 38(2): 517-526(in Chinese).

    [25] 王帅. 九龙江流域表层沉积物中营养盐污染研究[D]. 福建:华侨大学,2015. WANG S. Study on nutrient pollution in the surface sediments of Jiulong River[D]. Fujian: Huaqiao University, 2015(in Chinese).
    [26] 唐陈杰,左倬,成必新,等. 生态净化湿地预处理区底泥有机质与营养盐分布特征及评价[J]. 环境工程,2017,35(增刊):111-114,140.

    TANG C J, ZUO Z, CHENG B X, et al. Characteristics of distribution and evaluation of organic matter and nutrient in sediments in pretreatment unit of ecological wetland[J]. Environmental Engineering, 2017,35(Spl):111-114,140.(in Chinese).

  • 加载中
计量
  • 文章访问数:  1224
  • HTML全文浏览数:  1202
  • PDF下载数:  51
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-04-17
  • 刊出日期:  2019-02-15
马睿, 李璇, 卞婷婷, 马卫星, 丁成, 杜观超, 高旭. 水源生态净化系统沉积物中营养盐空间分布特征及污染评价[J]. 环境化学, 2019, 38(2): 412-421. doi: 10.7524/j.issn.0254-6108.2018041703
引用本文: 马睿, 李璇, 卞婷婷, 马卫星, 丁成, 杜观超, 高旭. 水源生态净化系统沉积物中营养盐空间分布特征及污染评价[J]. 环境化学, 2019, 38(2): 412-421. doi: 10.7524/j.issn.0254-6108.2018041703
MA Rui, LI Xuan, BIAN Tingting, MA Weixing, DING Cheng, DU Guanchao, GAO Xu. Spatial distribution and pollution assessment of nutrients in the sediments of a water source ecological purification system[J]. Environmental Chemistry, 2019, 38(2): 412-421. doi: 10.7524/j.issn.0254-6108.2018041703
Citation: MA Rui, LI Xuan, BIAN Tingting, MA Weixing, DING Cheng, DU Guanchao, GAO Xu. Spatial distribution and pollution assessment of nutrients in the sediments of a water source ecological purification system[J]. Environmental Chemistry, 2019, 38(2): 412-421. doi: 10.7524/j.issn.0254-6108.2018041703

水源生态净化系统沉积物中营养盐空间分布特征及污染评价

  • 1.  江苏大学环境与安全工程学院, 镇江, 212013;
  • 2.  盐城工学院环境科学与工程学院, 盐城, 224000;
  • 3.  盐城市城乡建设局盐龙湖饮用水源管理处, 盐城, 224000
基金项目:

国家自然科学基金(51608466)和江苏省自然科学基金青年基金项目(BK20160438,BK20160439)资助

摘要: 对盐龙湖水源生态净化系统预处理区、挺水植物区、沉水植物区及深度净化区沉积物中营养盐内源负荷及氮、磷的形态空间分布特征展开研究,并评价不同单元沉积物营养盐污染状况.结果表明:盐龙湖表层沉积物总氮(TN)、总磷(TP)、有机质(OM)含量范围分别为156.43—1130.00 mg·kg-1、615.23—1580.66 mg·kg-1、5.00%—49.04%.盐龙湖TP含量在预处理单元的沉积物中最高(1508.09 mg·kg-1),在挺水植物区B的沉积物中最低(932.30 mg·kg-1),而TN和OM含量都在挺水植物区A的沉积物中达到顶峰(1126.91 mg·kg-1, 48.89%),在深度净化区的沉积物中最低(272.47 mg·kg-1, 5.23%).闭蓄态磷(Abs-P)的含量占总磷(TP)比例最多(75.3%—82.3%),易解析磷(Exch-P)占TP比例均不超过1%;顺水流方向,铁结合态磷(Fe-P)和铝结合态磷(Al-P)含量呈下降的趋势,而Exch-P和钙磷(Ca-P)呈U字型先减后增.弱酸可提取态氮(WAEF-N)占可转化态氮(TTN)比例最高(45.3%—68.94%),强氧化剂可提取态氮(SOEF-N)占TTN比例最低(10.45%—19.08%),沉积物TTN中各形态氮含量分布次序为弱酸可提取态氮(WAEF-N)>强碱可提取态氮(SAEF-N)>离子交换态氮(IEF-N)>强氧化剂可提取态氮(SOEF-N).通过单一因子标准指数法、综合污染指数、有机氮和有机指数法进行评价,发现在预处理区和挺水植物区A营养盐污染最严重,其他处理单元也有不同程度的污染,深度净化区污染程度最低.

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回