水源生态净化系统沉积物中营养盐空间分布特征及污染评价
Spatial distribution and pollution assessment of nutrients in the sediments of a water source ecological purification system
-
摘要: 对盐龙湖水源生态净化系统预处理区、挺水植物区、沉水植物区及深度净化区沉积物中营养盐内源负荷及氮、磷的形态空间分布特征展开研究,并评价不同单元沉积物营养盐污染状况.结果表明:盐龙湖表层沉积物总氮(TN)、总磷(TP)、有机质(OM)含量范围分别为156.43—1130.00 mg·kg-1、615.23—1580.66 mg·kg-1、5.00%—49.04%.盐龙湖TP含量在预处理单元的沉积物中最高(1508.09 mg·kg-1),在挺水植物区B的沉积物中最低(932.30 mg·kg-1),而TN和OM含量都在挺水植物区A的沉积物中达到顶峰(1126.91 mg·kg-1, 48.89%),在深度净化区的沉积物中最低(272.47 mg·kg-1, 5.23%).闭蓄态磷(Abs-P)的含量占总磷(TP)比例最多(75.3%—82.3%),易解析磷(Exch-P)占TP比例均不超过1%;顺水流方向,铁结合态磷(Fe-P)和铝结合态磷(Al-P)含量呈下降的趋势,而Exch-P和钙磷(Ca-P)呈U字型先减后增.弱酸可提取态氮(WAEF-N)占可转化态氮(TTN)比例最高(45.3%—68.94%),强氧化剂可提取态氮(SOEF-N)占TTN比例最低(10.45%—19.08%),沉积物TTN中各形态氮含量分布次序为弱酸可提取态氮(WAEF-N)>强碱可提取态氮(SAEF-N)>离子交换态氮(IEF-N)>强氧化剂可提取态氮(SOEF-N).通过单一因子标准指数法、综合污染指数、有机氮和有机指数法进行评价,发现在预处理区和挺水植物区A营养盐污染最严重,其他处理单元也有不同程度的污染,深度净化区污染程度最低.Abstract: This study aimed to identify the spatial distribution of endogenous load of nutrients and distribution characteristics of nitrogen and phosphorus in the pretreatment area, emerged plant area, submerged plant area and deep purification area of Yanlong Lake ecological purification system and evaluate the pollution of nutrients in the sediments of different units. The results showed that the contents of total nitrogen (TN), total phosphorus (TP) and organic matter (OM) in the surface sediments of Yanlong Lake were 156.43-1130.00 mg·kg-1, 615.23-1580.66 mg·kg-1, 5.00%-49.04%, respectively. The upper (1508.09 mg·kg-1) and lower (932.30 mg·kg-1) range of TP content was in the sediments of the pretreatment unit and emergence plant area B, respectively. The sediments of the emergence plant area A had the upper range of TN (1126.91 mg·kg-1) and OM (48.89%), and the lower range of TN (272.47 mg·kg-1) and OM (5.23%) was in the deep purification zone sediments. Occluded phosphorus (Abs-P) accounted for 75.3%-82.3% of TP, the largest proportion. Exch-P had ≤ 1% of TP. In the direction along the flow, the contents of Iron phosphorus (Fe-P) and Aluminum phosphorus (Al-P) presented a tendency of decrease. The contents of Exch-P and Ca-P in the direction along flow at first decreased and then increased, showing a U-shaped trend. Weak acid extractable form (WAEF-N) accounted for the largest proportion of TTN (45.3%-68.94%), and Strong oxidant extractable form (SOEF-N) had 10.45%-19.08% of TTN, the lowest proportion. The morphological nitrogen contents in the sediment TTN were in the order of WAEF-N > strong alkali extractable form (SAEF-N) > ion exchange form (IEF-N) > SOEF-N. Our results from the single factor index method, comprehensive pollution index, organic nitrogen and organic index method demonstrated that the pollution in the pre-treatment zone S1 and emergent water plant zone S2 is the most serious and the deep purification zone S6 is the least polluted, along with other treatment units polluted to one degree or another.
-
-
[1] VYMAZAL J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007, 380(1): 48-65. [2] SAEED T, SUN G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media[J]. Journal of Environmental Management, 2012, 112: 429-448. [3] 贾锐珂,王晓昌,宋佳. 多元组合系统净化富营养化水体的示范工程[J]. 环境工程学报,2018,12(3):975-984. JIA R K, WANG X C, SONG J. Demonstration project of eutrophic water purification by a multicomponent system[J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 975-984(in Chinese).
[4] 吴英海, 韩蕊, 林必桂, 等. 复合人工湿地中低浓度有机物的去除及 Monod 模型模拟[J]. 环境工程学报,2013,7(6):2139-2146. WU Y H, Han R, Lin B G, et al. Removal effect of low-concentration organic pollutants and simulating with Monod model in hybrid constructed wetland[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2139-2146(in Chinese).
[5] YE X, WANG A J, CHEN J. Distribution and deposition characteristics of carbon and nitrogen in sediments in a semi-closed bay area, southeast China[J]. Continental Shelf Research, 2014, 90: 133-141. [6] AHLGREN J, REITZEL K, BRABANDEREH D, et al. Release of organic P forms from lake sediments[J]. Water Research, 2011, 45(2): 565-572. [7] SØNDERGAARD M, JENSEN J P, JEPPESEN E. Role of sediment and internal loading of phosphorus in shallow lakes[J]. Hydrobiologia, 2003, 506-509(1-3): 135-145. [8] 刘德鸿, 余居华, 钟继承,等. 太湖流域典型河网水体氮磷负荷及迁移特征[J]. 中国环境科学,2016,36(1):125-132. LIU D H, YU J H, ZHONG J C, et al. Characteristics of nitrogen and phosphorus loading and migration in typical river networks in Taihu lake basin[J]. China Environmental Science, 2016, 36(1): 125-132(in Chinese).
[9] 左倬, 郭萧, 李巍, 等. 盐龙湖工程中试系统去除原水中氮磷效果研究[J]. 中国水利,2013,14(1):33-36. ZUO Z, GUO X, LI W, et al. Result of nitrogen and phosphorus elimination with pilot system of Yanlong Lake Project[J]. China Water Resources, 2013, 14(1): 33-36(in Chinese).
[10] 杨政义. 人工生态湿地对水厂原水水质的净化[J]. 城镇供水,2014,1(1):56-61. YANG Z Y. Artificial eco-wetland purification of raw water quality of water plant[J]. City and Town Water Supply, 2014, 1(1): 56-61(in Chinese).
[11] 左倬, 朱雪诞, 胡伟,等. 盐城蟒蛇河饮用水源原水水质及盐龙湖工程水质净化效果评价[J]. 环境污染与防治,2015,37(5):61-65. ZUO Z, ZHU X Y, HU W, et al. Study on the quality characteristics of the raw water of the drinking water source, Mangshe River, Yangcheng and the evaluation of the water quality purification effect of Yanlong Lake project[J]. Environmental Pollution & Control, 2015, 37(5): 61-65(in Chinese).
[12] 王超, 陈煜权, 蔡丽婧,等. 不同季节大型生态净化工程对原水氮素净化效果[J]. 环境工程学报,2015,9(8):3763-3767. WANG C, CHENG Y C, CAI L J, et al. Raw water nitrogen purification efficiency by large-scale ecological purification engineering in different seasons[J]. Chinese Journal of Environmental Engineering, 2015, 9(8): 3763-3767(in Chinese).
[13] YU J, FAN C, ZHONG J, et al. Evaluation of in situ simulated dredging to reduce internal nitrogen flux across the sediment-water interface in Lake Taihu, China[J]. Environmental Pollution, 2016, 214: 866-877. [14] LIU C, ZHONG J, WANG J, et al. Fifteen-year study of environmental dredging effect on variation of nitrogen and phosphorus exchange across the sediment-water interface of an urban lake[J]. Environmental Pollution, 2016, 219: 639-648. [15] 王宇, 王宝玲, 彭卫西,等. 石臼漾湿地冬季有机质的可生化性[J]. 环境科学学报,2013,33(10):2774-2785. WANG Y, WANG B L, PENG W X, et al. Biodegradability of organic matter in Shijiuyang wetland during winter[J]. Acta Scientiae Circumstantiae, 33(10): 2774-2785(in Chinese).
[16] 王圣瑞. 湖泊沉积物-水界面过程[M]. 北京:科学出版社,2014. WANG S R. Lake sediment-water interface process[M]. Beijing: Science Press, 2014(in Chinese). [17] 邱祖凯,胡小贞,姚程,等. 山美水库沉积物氮磷和有机质污染特征及评价[J]. 环境科学,2016,37(4):1389-1396. QIU Z K, HU X Z, YAO C, et al. Pollution Characteristics and Evaluation of Nitrogen, Phosphorus and Organic Matter in Sediments of Shanmei Reservoir in Fujian, China[J]. Environmental Science, 2016, 37(4): 1389-1396(in Chinese).
[18] 王亚平, 黄廷林, 周子振,等. 金盆水库表层沉积物中营养盐分布特征与污染评价[J]. 环境化学, 2017, 36(3):659-665. WANG Y P, HUANG Y L, ZHOU Z Z, et al. Distribution and pollution evaluation of nutrients in surface sediments of Jinpen Reservoir[J]. Environmental Chemistry, 2017, 36(3): 659-665 (in Chinese).
[19] 杨文焕, 崔亚楠, 李卫平,等. 冰封期湿地沉积物碳、氮、磷分布及污染评价[J]. 环境化学, 2018, 37(2): 287-295. YANG W H, CUI Y N, LI W P, et al. Distribution and pollution evaluation of carbon, nitrogen and phosphorus in sediments of lake Nanhai in Baotou City[J]. Environmental Chemistry, 2018, 37(2): 287-295 (in Chinese).
[20] WANG L, LIANG T. Distribution patterns and dynamics of phosphorus forms in the overlying water and sediment of Dongting Lake[J]. Journal of Great Lakes Research, 2016, 42(3): 565-570. [21] XIANG S L, ZHOU W B. Phosphorus forms and distribution in the sediments of Poyang Lake, China[J]. International Journal of Sediment Research, 2011, 26(2): 230-238. [22] 潘婷婷,赵雪,袁轶君,等. 三峡水库沉积物不同赋存形态磷的时空分布[J]. 环境科学学报,2016,36(8):2968-2973. PAN T T, ZHAO X, YUAN Z J, et al. Spatio-temporal distribution characteristics of different phosphorus forms in sediments from the Three Gorges Reservoir[J]. Acta Scientiae Circumstantiae, 2016, 36(8): 2968-2973(in Chinese).
[23] 马红波,宋金明,吕晓霞,等. 渤海沉积物中氮的形态及其在循环中的作用[J]. 地球化学,2003,32(1):48-54. MA H B, SONG J M, LV X X, et al. Nitrogen forms in sediments of the bo sea and their roles in circulation[J]. Geochemistry, 2003, 32(1): 48-54(in Chinese).
[24] 吴亚林,李帅东,江俊武,等. 百年来滇池沉积物中不同形态氮分布及埋藏特征[J]. 环境科学,2017,38(2):517-526. WU Y L, LI S D, JIANG J W, et al. Distribution and burial characteristics of nitrogen forms in sediment of dianchi lake during last century[J]. Environmental Science, 2017, 38(2): 517-526(in Chinese).
[25] 王帅. 九龙江流域表层沉积物中营养盐污染研究[D]. 福建:华侨大学,2015. WANG S. Study on nutrient pollution in the surface sediments of Jiulong River[D]. Fujian: Huaqiao University, 2015(in Chinese). [26] 唐陈杰,左倬,成必新,等. 生态净化湿地预处理区底泥有机质与营养盐分布特征及评价[J]. 环境工程,2017,35(增刊):111-114,140. TANG C J, ZUO Z, CHENG B X, et al. Characteristics of distribution and evaluation of organic matter and nutrient in sediments in pretreatment unit of ecological wetland[J]. Environmental Engineering, 2017,35(Spl):111-114,140.(in Chinese).
-

计量
- 文章访问数: 1224
- HTML全文浏览数: 1202
- PDF下载数: 51
- 施引文献: 0