山东某污水处理厂中环型和线型甲基硅氧烷的行为归趋

曲垚, 徐琳, 蔡亚岐, 智丽琴, 张春晖. 山东某污水处理厂中环型和线型甲基硅氧烷的行为归趋[J]. 环境化学, 2019, 38(2): 422-432. doi: 10.7524/j.issn.0254-6108.2018041802
引用本文: 曲垚, 徐琳, 蔡亚岐, 智丽琴, 张春晖. 山东某污水处理厂中环型和线型甲基硅氧烷的行为归趋[J]. 环境化学, 2019, 38(2): 422-432. doi: 10.7524/j.issn.0254-6108.2018041802
QU Yao, XU Lin, CAI Yaqi, ZHI Liqin, ZHANG Chunhui. Occurrence and fate of cyclic and linear methylsiloxanes in a wastewater treatment plant in Shandong Province, China[J]. Environmental Chemistry, 2019, 38(2): 422-432. doi: 10.7524/j.issn.0254-6108.2018041802
Citation: QU Yao, XU Lin, CAI Yaqi, ZHI Liqin, ZHANG Chunhui. Occurrence and fate of cyclic and linear methylsiloxanes in a wastewater treatment plant in Shandong Province, China[J]. Environmental Chemistry, 2019, 38(2): 422-432. doi: 10.7524/j.issn.0254-6108.2018041802

山东某污水处理厂中环型和线型甲基硅氧烷的行为归趋

  • 基金项目:

    国家自然科学基金(21537004,21777182,21621064,21407159)和中国科学院战略性先导科技专项(XDB14010201)资助

Occurrence and fate of cyclic and linear methylsiloxanes in a wastewater treatment plant in Shandong Province, China

  • Fund Project: Supported by the National Natural Science Foundation of China (21537004, 21777182, 21621064,21407159) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB14010201)
  • 摘要: 本文研究了山东某污水处理厂污水及污泥中3种环型甲基硅氧烷(D4—D6,CMS)和12种线型甲基硅氧烷(L5—L16,LMS)的行为归趋.进水中总甲基硅氧烷(∑MS)的浓度为15.7—65.7 μg·L-1(平均值:39.2 μg·L-1),其中∑LMS占比为98.2%.进水中∑MS浓度夏季最高(65.7 μg·L-1),其次分别是秋季(41.7 μg·L-1)、冬季(33.7 μg·L-1)和春季(15.7 μg·L-1).出水中∑MS浓度为6.24—14.3 μg·L-1(平均值:10.6 μg·L-1),平均去除率为73.0%.污泥中∑MS的浓度为14.1—48.4 μg·g-1(平均值:20.3 μg·g-1),D4—D6的泥水分配系数(lg Kd)为3.84—4.44,L6—L16的lg Kd为2.24—4.30.此外,通过计算甲基硅氧烷的危险商数(hazard quotients,HQ)评估了其对水生生物的危害,发现污水处理厂出水中目标化合物的潜在危害较低.
  • 加载中
  • [1] HORⅡ Y, KANNAN K. Survey of organosilicone compounds, including cyclic and linear siloxanes, in personal-care and household products[J]. Archives of Environmental Contamination & Toxicology, 2008, 55(4):701-710.
    [2] XU L, SHI Y, WANG T, et al. Methyl siloxanes in environmental matrices around a siloxane production facility, and their distribution and elimination in plasma of exposed population[J]. Environmental Science & Technology, 2012, 46(21):11718-11726.
    [3] CAPELA D, ALVES A, HOMEM V, et al. From the shop to the drain-volatile methylsiloxanes in cosmetics and personal care products[J]. Environment International, 2016, 92-93:50-62.
    [4] XU L, ZHI L, CAI Y. Methylsiloxanes in children silicone-containing products from China: Profiles, leaching, and children exposure[J]. Environment International, 2017, 101:165-172.
    [5] DUDZINA T, GOETZ N V, BOGDAL C, et al. Concentrations of cyclic volatile methylsiloxanes in European cosmetics and personal care products: Prerequisite for human and environmental exposure assessment[J]. Environment International, 2014, 62(4):86-94.
    [6] WANG D G, NORWOOD W, ALAEE M, et al. Review of recent advances in research on the toxicity, detection, occurrence and fate of cyclic volatile methyl siloxanes in the environment[J]. Chemosphere, 2013, 93(5):711-725.
    [7] PIERI F, KATSOYIANNIS A, MARTELLINI T, et al. Occurrence of linear and cyclic volatile methyl siloxanes in indoor air samples (UK and Italy) and their isotopic characterization[J]. Environment International, 2013, 59(3):363-371.
    [8] POWELL D E, SUGANUMA N, KOBAYASHI K, et al. Trophic dilution of cyclic volatile methylsiloxanes (cVMS) in the pelagic marine food web of Tokyo Bay, Japan[J]. Science of the Total Environment, 2016, 578:366-382.
    [9] XU L, XU S, ZHI L, et al. Methylsiloxanes release from one landfill through yearly cycle and their removal mechanisms (especially hydroxylation) in leachates[J]. Environmental Science & Technology, 2017, 51(21):12337-12346.
    [10] POWELL D E, SCHØYEN M, ØXNEVAD S, et al. Bioaccumulation and trophic transfer of cyclic volatile methylsiloxanes (cVMS) in the aquatic marine food webs of the Oslofjord, Norway[J]. Science of the Total Environment, 2018, 622:127-139.
    [11] KROGSETH I S, KIERKEGAARD A, MCLACHLAN M S, et al. Occurrence and seasonality of cyclic volatile methyl siloxanes in arctic air[J]. Environmental Science & Technology, 2013, 47(1):502-509.
    [12] XU S, KROPSCOTT B. Evaluation of the three-phase equilibrium method for measuring temperature dependence of internally consistent partition coefficients (KOW, KOA, and KAW) for volatile methylsiloxanes and trimethylsilanol[J]. Environmental Toxicology & Chemistry, 2014, 33(12):2702-2710.
    [13] XU L, SHI Y, CAI Y. Occurrence and fate of volatile siloxanes in a municipal wastewater treatment plant of Beijing, China[J]. Water Research, 2013, 47(2):715-724.
    [14] BLETSOU A A, ASIMAKOPOULOS A G, STASINAKIS A S, et al. Mass loading and fate of linear and cyclic siloxanes in a wastewater treatment plant in Greece[J]. Environmental Science & Technology, 2013, 47(4):1824-1832.
    [15] SHI Y, XU S, XU L, et al. Distribution, elimination, and rearrangement of cyclic volatile methylsiloxanes in oil-contaminated soil of the shengli oilfield, China[J]. Environmental Science & Technology, 2015, 49(19):11527-11535.
    [16] LU Y, YUAN T, WANG W, et al. Concentrations and assessment of exposure to siloxanes and synthetic musks in personal care products from China[J]. Environmental Pollution, 2011, 159(12):3522-3528.
    [17] TRINH T, AKKER B V D, COLEMAN H M, et al. Seasonal variations in fate and removal of trace organic chemical contaminants while operating a full-scale membrane bioreactor[J]. Science of the Total Environment, 2016, 550:176-183.
    [18] XU L, SHI Y, LIU N, et al. Methyl siloxanes in environmental matrices and human plasma/fat from both general industries and residential areas in China[J]. Science of the Total Environment, 2015, 505(1):454-463.
    [19] ZHANG C. Removal of cyclic and linear siloxanes in effluents from a cosmetic wastewater treatment plant by electrochemical oxidation[J]. International Journal of Electrochemical Science, 2016:6914-6921.
    [20] LI B, LI W L, SUN S J, et al. The occurrence and fate of siloxanes in wastewater treatment plant in Harbin, China[J]. Environ Sci Pollut Res Int, 2016, 23(13):13200-13209.
    [21] LEE S, MOON H B, SONG G J, et al. A nationwide survey and emission estimates of cyclic and linear siloxanes through sludge from wastewater treatment plants in Korea[J]. Science of the Total Environment, 2014, 497:106-112.
    [22] SÁNCHEZ-BRUNETE C, MIGUEL E, ALBERO B, et al. Determination of cyclic and linear siloxanes in soil samples by ultrasonic-assisted extraction and gas chromatography–mass spectrometry[J]. Journal of Chromatography A, 2010, 1217(45):7024-7030.
    [23] SURITA S C, TANSEL B. Contribution of siloxanes to COD loading at wastewater treatment plants: Phase transfer, removal, and fate at different treatment units[J]. Chemosphere, 2015, 122:245-250.
    [24] LIU N, SHI Y, LI W, et al. Concentrations and distribution of synthetic musks and siloxanes in sewage sludge of wastewater treatment plants in China[J]. Science of the Total Environment, 2014, 476:65-72.
    [25] CAPELA D, RATOLA N, ALVES A, et al. Volatile methylsiloxanes through wastewater treatment plants: A review of levels and implications[J]. Environment International, 2017, 102:9-29.
    [26] KENT D J, MCNAMARA P C, PUTT A E, et al. Octamethylcyclotetrasiloxane in aquatic sediments: Toxicity and risk assessment[J]. Ecotoxicology & Environmental Safety, 1994, 29(3):372-389.
    [27] MEEKS R, STUMP D W, HOLSON J, et al. An inhalation reproductive toxicity study of octamethylcyclotetrasiloxane (D4) in female rats using multiple and single day exposure regimens[J]. Reproductive Toxicology, 2007, 23(2):192-201.
    [28] HOMEM V, CAPELA D, SILVA J A, et al. An approach to the environmental prioritisation of volatile methylsiloxanes in several matrices[J]. Science of the Total Environment, 2017, 579:506-513.
    [29] VELICOGNA J, RITCHIE E, PRINCZ J, et al. Ecotoxicity of siloxane D5 in soil[J]. Chemosphere, 2012, 87(1):77-83.
    [30] MCKIM J M, WILGA P C, BRESLIN W J, et al. Potential estrogenic and antiestrogenic activity of the cyclic siloxane octamethylcyclotetrasiloxane (d4) and the linear siloxane hexamethyldisiloxane (hmds) in immature rats using the uterotrophic assay[J]. Toxicological Sciences, 2001, 63(1):37-46.
    [31] FAIRBROTHER A, WOODBURN K. Assessing the aquatic risks of the cyclic volatile methyl siloxane D4[J].Environmental Science & Technology Letters, 2016, 3(10):359-363.
  • 加载中
计量
  • 文章访问数:  1093
  • HTML全文浏览数:  1067
  • PDF下载数:  99
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-04-18
  • 刊出日期:  2019-02-15
曲垚, 徐琳, 蔡亚岐, 智丽琴, 张春晖. 山东某污水处理厂中环型和线型甲基硅氧烷的行为归趋[J]. 环境化学, 2019, 38(2): 422-432. doi: 10.7524/j.issn.0254-6108.2018041802
引用本文: 曲垚, 徐琳, 蔡亚岐, 智丽琴, 张春晖. 山东某污水处理厂中环型和线型甲基硅氧烷的行为归趋[J]. 环境化学, 2019, 38(2): 422-432. doi: 10.7524/j.issn.0254-6108.2018041802
QU Yao, XU Lin, CAI Yaqi, ZHI Liqin, ZHANG Chunhui. Occurrence and fate of cyclic and linear methylsiloxanes in a wastewater treatment plant in Shandong Province, China[J]. Environmental Chemistry, 2019, 38(2): 422-432. doi: 10.7524/j.issn.0254-6108.2018041802
Citation: QU Yao, XU Lin, CAI Yaqi, ZHI Liqin, ZHANG Chunhui. Occurrence and fate of cyclic and linear methylsiloxanes in a wastewater treatment plant in Shandong Province, China[J]. Environmental Chemistry, 2019, 38(2): 422-432. doi: 10.7524/j.issn.0254-6108.2018041802

山东某污水处理厂中环型和线型甲基硅氧烷的行为归趋

  • 1.  中国矿业大学(北京) 化学与环境工程学院, 北京, 100083;
  • 2.  中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京, 100085
基金项目:

国家自然科学基金(21537004,21777182,21621064,21407159)和中国科学院战略性先导科技专项(XDB14010201)资助

摘要: 本文研究了山东某污水处理厂污水及污泥中3种环型甲基硅氧烷(D4—D6,CMS)和12种线型甲基硅氧烷(L5—L16,LMS)的行为归趋.进水中总甲基硅氧烷(∑MS)的浓度为15.7—65.7 μg·L-1(平均值:39.2 μg·L-1),其中∑LMS占比为98.2%.进水中∑MS浓度夏季最高(65.7 μg·L-1),其次分别是秋季(41.7 μg·L-1)、冬季(33.7 μg·L-1)和春季(15.7 μg·L-1).出水中∑MS浓度为6.24—14.3 μg·L-1(平均值:10.6 μg·L-1),平均去除率为73.0%.污泥中∑MS的浓度为14.1—48.4 μg·g-1(平均值:20.3 μg·g-1),D4—D6的泥水分配系数(lg Kd)为3.84—4.44,L6—L16的lg Kd为2.24—4.30.此外,通过计算甲基硅氧烷的危险商数(hazard quotients,HQ)评估了其对水生生物的危害,发现污水处理厂出水中目标化合物的潜在危害较低.

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回