短乳杆菌对Cr3+的吸附及动力学和热力学拟合
Adsorption and kinetic and thermodynamic fitting of Lactobacillus brevis to Cr3+
-
摘要: 研究了Lactobacillus brevis对水溶液中Cr(Ⅲ)的吸附作用.考察了初始pH值、接触时间、初始Cr(Ⅲ)浓度、菌体浓度和温度对Cr(Ⅲ)吸附效果的影响.结果表明,在较低的pH、温度和初始Cr(Ⅲ)离子浓度条件下,菌株对Cr(Ⅲ)离子的吸附量较低.在试验条件下,溶液初始pH、温度和初始Cr(Ⅲ)离子浓度的升高,均能提高菌株对Cr(Ⅲ)离子的吸附量.在温度为40℃、pH 6和初始Cr(Ⅲ)离子浓度为200 mg·L-1时,菌株吸附量最大.随菌体浓度升高,单位浓度菌体对Cr(Ⅲ)离子吸附量降低,但总吸附量增大,菌体浓度为6 g·L-1吸附量最大.菌株对Cr(Ⅲ)离子吸附较快,接触时间为1 h就达到平衡.用Langmuir、Freundlich、Redlich-Peterson和Temkin吸附模型进行拟合,相关的回归系数表明,吸附过程拟合Langmuir吸附模型比Freundlich、Redlich-Peterson和Temkin吸附模型好.用Elovich、准一级、准二级动力学拟合,动力学试验数据与Lagergren准二级动力学方程的拟合度最佳.Abstract: The biosorption of Cr(Ⅲ) from aqueous solutions by Lactobacillus brevis was studied. The effects of initial pH, contact time, initial Cr(Ⅲ) concentration, bacterial concentration and temperature of biosorption of Cr(Ⅲ) from aqueous solutions were investigated. The results indicate that the adsorption of Cr(Ⅲ) ions was low under low pH, temperature and initial Cr(Ⅲ) ion concentration conditions. Under the experimental conditions, as the initial solution pH, temperature, initial Cr(Ⅲ) ions concentration increased, Cr(Ⅲ) ion adsorption capacity of strains increased. At the temperature of 40℃, pH of 6, initial Cr(Ⅲ) ion concentration of 200 mg·L-1, strain had the maximum adsorption amount. With the increase of bacterial concentration, Cr(Ⅲ) ion adsorption capacity decreased by unit bacterial concentration but the total adsorption capacity increased, with the maximum reached at the concentration of 6 g·L-1. The adsorption of Cr(Ⅲ) ions was very fast and the equilibrium reached at the contact time of 1h. As showed by correlation regression coefficients, that the model with the biosorption process fitted with Langmuir isotherm was better than the one fitted with Freundlich、Redlich-Peterson and Temkin. Fitted with Elovich, pseudo-first-order and pseudo-second-order kinetic, Lagergren pseudo-second order equation gave the best fitting degree to the data of kinetics experiment.
-
Key words:
- lactic acid bacteria /
- Cr (Ⅲ) /
- adsorption kinetics /
- adsorption thermodynamics
-
-
[1] 许友泽,杨志辉,向仁军.铬污染土壤的微生物修复[J]. 环境化学, 2011, 30(2):555-560. XU Y Z, YANG Z H, XIANG R J. Reduction of chromium contaminated soils by microorganism[J]. Environmental Chemistry, 2011, 30(2):555-560(in Chinese).
[2] XU F, MA T, SHI L, et al. Bioreduction of Cr(Ⅵ) by Bacillus sp. QH-1 isolated from soil under chromium-containing slag heap in high altitude area[J]. Annals of Microbiology, 2014, 64(3):1073-1080. [3] 罗南, 张晓影, 李晓军,等. 虾壳和松树皮对水中三价铬的吸附性能研究[J]. 环境科学与技术, 2017, 40(s1):44-48. LUO N, ZHANG X Y, LI X J, et al. Research of biosorption of Cr3+ by waste shrimp shell and pine bark[J]. Environmental Science and Technology, 2017, 40(s1):44-48(in Chinese).
[4] 汤克勇.铬的污染源及其危害[J].皮革科学与工程,1997,7(1):33-37. TANG K Y. Sources and harmfulness of chromium pollution[J]. Leather Science and Engineering, 1997, 7(1):33-37(in Chinese).
[5] 王亚军, 王进喜. 响应面法优化腐殖酸去除水中重金属铬的吸附条件及热力学研究[J]. 环境化学, 2013,32(12):2282-2289. WANG Y J, WANG J X. Response surface methodology to optimize adsorption condition and thermodynamic studies of Cr(Ⅵ) from aqueous solutions onto humic acid[J]. Environmental Chemistry, 2013,32(12):2282-2289(in Chinese).
[6] ACKERLEY D F, BARAK Y, LYNCH S V, et al. Effect of chromate stress on Escherichia coli K-12.[J]. Journal of Bacteriology, 2006, 188(9):3371-3381. [7] 马宏瑞, 连坤宙, 马秀. Zr(OH)4沉淀物对铬鞣废水Cr3+的吸附实验[J]. 环境化学, 2013,32(1):118-124. MA H R. LIAN K Z, MA X. Adsorptive removal of Cr3+ from chromium tanning wastewater using zirconium hydroxide[J]. Environmental Chemistry, 2013,32(1):118-124(in Chinese).
[8] 吴海锁, 张洪玲, 张爱茜,等. 小球藻吸附重金属离子的试验研究[J]. 环境化学, 2004, 23(2):173-177. WU H S,ZHANG H L,ZHANG A X,et al. Biosorption of heavy metals by chlorella[J]. Environmental Chemistry, 2004, 23(2):173-177(in Chinese).
[9] ANABDKUMAR J, MANDAL B. Adsorption of chromium(VI) and Rhodamine B by surface modified tannery waste:kinetic, mechanistic and thermodynamic studies.[J]. Journal of Hazardous Materials, 2011, 186(2-3):1088-1096. [10] KORBAHTI B K, ARTUT K, GECGEL C, et al. Electrochemical decolorization of textile dyes and removal of metal ions from textile dye and metal ion binary mixtures[J]. Chemical Engineering Journal, 2011, 173(3):677-688. [11] 黄水娥, 杨海君, 关向杰,等. 制革工业中去Cr3+高效菌的筛选及其鉴定[J]. 中国皮革, 2013,42(11):1-4. HUANG S E, YANG H J, GUAN X J, et al. Screening and identification of high efficiency bacteria for removing Cr3+ from leather industry[J]. China Leather, 2013, 42(11):1-4(in Chinese).
[12] RAHMAN M U, GUL S, HAQ M Z U. Reduction of chromium(VI) by locally isolated Pseudomonas sp. C-171[J]. Turkish Journal of Biology, 2007, 31(3):161-166. [13] CALFA B A, TOREM M L. On the fundamentals of Cr(Ⅲ) removal from liquid streams by a bacterial strain[J]. Minerals Engineering, 2008, 21(1):48-54. [14] ANDERSON R A, POLANSKY M M, ROGINSKY E E, et al. Factors affecting the retention and extraction of yeast chromium[J]. Journal of Agricultural & Food Chemistry, 1978, 26(4):858-861. [15] 刘文群, 邓泽元, 徐尔尼,等. 乳酸菌富集微量元素Se、Cr、Zn的初步研究[J]. 食品与发酵工业, 2005, 31(3):75-77. LIU W Q, DENG Z Y, XU E N, et al. The study on bioconcentrating trace elements of selenium chromium and zinc[J]. Food and Fermentation Industries, 2005, 31(3):75-77(in Chinese).
[16] 刘文群, 黄丽婵, 韩伟. 乳酸菌同时富集硒铬锌的初步研究[J]. 食品与机械, 2007, 23(2):41-42. LIU W Q, HUANG L C, HAN W. Study on sync enrichment of Se Cr and Zn by lactic acid bacteria[J]. Food & Machinery, 2005, 31(3):75-77(in Chinese).
[17] BHAKTA J N, OHNISHI K, MUNEKAGE Y, et al. Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents[J]. Journal of Applied Microbiology, 2012, 112(6):1193-1206. [18] LAHTEINEN T, LINDHOLM A, RINTTILA T, et al. Effect of Lactobacillus brevis ATCC 8287 as a feeding supplement on the performance and immune function of piglets[J]. Veterinary Immunology & Immunopathology, 2014, 158(1-2):14-25. [19] YU M L, KIM J S, WANG J K. Optimization for the maximum bacteriocin production of Lactobacillus brevis, DF01 using response surface methodology[J]. Food Science and Biotechnology, 2012, 21(3):653-659. [20] SHARMA A, KAUR J, LEE S, et al. RAPD typing of Lactobacillus brevis, isolated from various food products from Korea[J]. Food Science & Biotechnology, 2016, 25(6):1651-1655. [21] GAO J F, ZHANG Q, WANG H, et al. Acid orange 10 dye biosorption by yeast isolated from polluted soil biomass.[J]. Bioresource Technology, 2011, 102(2):805-813. [22] FIOL N, VILLAESCUSA I, MARTINEZ M, et al. Sorption of Pb(Ⅱ), Ni(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) from aqueous solution by olive stone waste[J]. Separation & Purification Technology, 2006, 50(1):132-140. [23] EI-SAYED M T. Removal of lead(Ⅱ) by Saccharomyces cerevisiae, AUMC 3875[J]. Annals of Microbiology, 2013, 63(4):1459-1470. [24] NADEEM R, HANIF M A, SHAHEEN F, et al. Physical and chemical modification of distillery sludge for Pb(Ⅱ) biosorption[J]. Journal of Hazardous Materials, 2008, 150(2):335-342. [25] KAHARMAN S, ASMA D, ERDEMOGLU S, et al. Biosorption of copper(Ⅱ) by live and dried biomass of the white rot fungi phanerochaete chrysosporium and funalia trogii[J]. Engineering in Life Sciences, 2005, 5(1):72-77. [26] DHANKHAR P R, HOODA A, SOLANKI R, et al. Saccharomyces cerevisiae:A potential biosorbent for biosorption of uranium.[J]. International Journal of Engineering Science & Technology, 2011, 3(6):103-126. [27] MASHITAH, ZULFADHLY Z, BHATIA S. Ability of Pycnoporus sanguineus to remove copper ions from aqueous solution.[J]. Artificial Cells Blood Substitutes & Biotechnology, 2009, 27(5-6):429-433. [28] YILMAZ M, TAY T, KIVANC M, et al. Removal of corper(Ⅱ) ions from aqueous solution by a lactic acid bacterium.[J]. Brazilian Journal of Chemical Engineering, 2010, 27(2):309-314. [29] FENG M, CHEN X, LI C, et al. Isolation and identification of an exopolysaccharide-producing lactic acid bacterium strain from Chinese Paocai and biosorption of Pb(Ⅱ) by its exopolysaccharide[J]. Journal of Food Science, 2012, 77(6):T111-T117. [30] HU X J, WANG J S, LIU Y G, et al. Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin:Isotherms, kinetics and thermodynamics[J]. Journal of Hazardous Materials, 2011. 185(1):306-314. -

计量
- 文章访问数: 1295
- HTML全文浏览数: 1281
- PDF下载数: 27
- 施引文献: 0