短乳杆菌对Cr3+的吸附及动力学和热力学拟合

代启虎, 李冉, 葛俊苗, 张雯, 李柏林, 欧杰. 短乳杆菌对Cr3+的吸附及动力学和热力学拟合[J]. 环境化学, 2019, 38(3): 626-634. doi: 10.7524/j.issn.0254-6108.2018042602
引用本文: 代启虎, 李冉, 葛俊苗, 张雯, 李柏林, 欧杰. 短乳杆菌对Cr3+的吸附及动力学和热力学拟合[J]. 环境化学, 2019, 38(3): 626-634. doi: 10.7524/j.issn.0254-6108.2018042602
DAI Qihu, LI Ran, GE Junmiao, ZHANG Wen, LI Bailin, OU Jie. Adsorption and kinetic and thermodynamic fitting of Lactobacillus brevis to Cr3+[J]. Environmental Chemistry, 2019, 38(3): 626-634. doi: 10.7524/j.issn.0254-6108.2018042602
Citation: DAI Qihu, LI Ran, GE Junmiao, ZHANG Wen, LI Bailin, OU Jie. Adsorption and kinetic and thermodynamic fitting of Lactobacillus brevis to Cr3+[J]. Environmental Chemistry, 2019, 38(3): 626-634. doi: 10.7524/j.issn.0254-6108.2018042602

短乳杆菌对Cr3+的吸附及动力学和热力学拟合

  • 基金项目:

    国家自然科学基金(31671779)资助.

Adsorption and kinetic and thermodynamic fitting of Lactobacillus brevis to Cr3+

  • Fund Project: Supported by the National Natural Science Foundation of China (31671779).
  • 摘要: 研究了Lactobacillus brevis对水溶液中Cr(Ⅲ)的吸附作用.考察了初始pH值、接触时间、初始Cr(Ⅲ)浓度、菌体浓度和温度对Cr(Ⅲ)吸附效果的影响.结果表明,在较低的pH、温度和初始Cr(Ⅲ)离子浓度条件下,菌株对Cr(Ⅲ)离子的吸附量较低.在试验条件下,溶液初始pH、温度和初始Cr(Ⅲ)离子浓度的升高,均能提高菌株对Cr(Ⅲ)离子的吸附量.在温度为40℃、pH 6和初始Cr(Ⅲ)离子浓度为200 mg·L-1时,菌株吸附量最大.随菌体浓度升高,单位浓度菌体对Cr(Ⅲ)离子吸附量降低,但总吸附量增大,菌体浓度为6 g·L-1吸附量最大.菌株对Cr(Ⅲ)离子吸附较快,接触时间为1 h就达到平衡.用Langmuir、Freundlich、Redlich-Peterson和Temkin吸附模型进行拟合,相关的回归系数表明,吸附过程拟合Langmuir吸附模型比Freundlich、Redlich-Peterson和Temkin吸附模型好.用Elovich、准一级、准二级动力学拟合,动力学试验数据与Lagergren准二级动力学方程的拟合度最佳.
  • 加载中
  • [1] 许友泽,杨志辉,向仁军.铬污染土壤的微生物修复[J]. 环境化学, 2011, 30(2):555-560.

    XU Y Z, YANG Z H, XIANG R J. Reduction of chromium contaminated soils by microorganism[J]. Environmental Chemistry, 2011, 30(2):555-560(in Chinese).

    [2] XU F, MA T, SHI L, et al. Bioreduction of Cr(Ⅵ) by Bacillus sp. QH-1 isolated from soil under chromium-containing slag heap in high altitude area[J]. Annals of Microbiology, 2014, 64(3):1073-1080.
    [3] 罗南, 张晓影, 李晓军,等. 虾壳和松树皮对水中三价铬的吸附性能研究[J]. 环境科学与技术, 2017, 40(s1):44-48.

    LUO N, ZHANG X Y, LI X J, et al. Research of biosorption of Cr3+ by waste shrimp shell and pine bark[J]. Environmental Science and Technology, 2017, 40(s1):44-48(in Chinese).

    [4] 汤克勇.铬的污染源及其危害[J].皮革科学与工程,1997,7(1):33-37.

    TANG K Y. Sources and harmfulness of chromium pollution[J]. Leather Science and Engineering, 1997, 7(1):33-37(in Chinese).

    [5] 王亚军, 王进喜. 响应面法优化腐殖酸去除水中重金属铬的吸附条件及热力学研究[J]. 环境化学, 2013,32(12):2282-2289.

    WANG Y J, WANG J X. Response surface methodology to optimize adsorption condition and thermodynamic studies of Cr(Ⅵ) from aqueous solutions onto humic acid[J]. Environmental Chemistry, 2013,32(12):2282-2289(in Chinese).

    [6] ACKERLEY D F, BARAK Y, LYNCH S V, et al. Effect of chromate stress on Escherichia coli K-12.[J]. Journal of Bacteriology, 2006, 188(9):3371-3381.
    [7] 马宏瑞, 连坤宙, 马秀. Zr(OH)4沉淀物对铬鞣废水Cr3+的吸附实验[J]. 环境化学, 2013,32(1):118-124.

    MA H R. LIAN K Z, MA X. Adsorptive removal of Cr3+ from chromium tanning wastewater using zirconium hydroxide[J]. Environmental Chemistry, 2013,32(1):118-124(in Chinese).

    [8] 吴海锁, 张洪玲, 张爱茜,等. 小球藻吸附重金属离子的试验研究[J]. 环境化学, 2004, 23(2):173-177.

    WU H S,ZHANG H L,ZHANG A X,et al. Biosorption of heavy metals by chlorella[J]. Environmental Chemistry, 2004, 23(2):173-177(in Chinese).

    [9] ANABDKUMAR J, MANDAL B. Adsorption of chromium(VI) and Rhodamine B by surface modified tannery waste:kinetic, mechanistic and thermodynamic studies.[J]. Journal of Hazardous Materials, 2011, 186(2-3):1088-1096.
    [10] KORBAHTI B K, ARTUT K, GECGEL C, et al. Electrochemical decolorization of textile dyes and removal of metal ions from textile dye and metal ion binary mixtures[J]. Chemical Engineering Journal, 2011, 173(3):677-688.
    [11] 黄水娥, 杨海君, 关向杰,等. 制革工业中去Cr3+高效菌的筛选及其鉴定[J]. 中国皮革, 2013,42(11):1-4.

    HUANG S E, YANG H J, GUAN X J, et al. Screening and identification of high efficiency bacteria for removing Cr3+ from leather industry[J]. China Leather, 2013, 42(11):1-4(in Chinese).

    [12] RAHMAN M U, GUL S, HAQ M Z U. Reduction of chromium(VI) by locally isolated Pseudomonas sp. C-171[J]. Turkish Journal of Biology, 2007, 31(3):161-166.
    [13] CALFA B A, TOREM M L. On the fundamentals of Cr(Ⅲ) removal from liquid streams by a bacterial strain[J]. Minerals Engineering, 2008, 21(1):48-54.
    [14] ANDERSON R A, POLANSKY M M, ROGINSKY E E, et al. Factors affecting the retention and extraction of yeast chromium[J]. Journal of Agricultural & Food Chemistry, 1978, 26(4):858-861.
    [15] 刘文群, 邓泽元, 徐尔尼,等. 乳酸菌富集微量元素Se、Cr、Zn的初步研究[J]. 食品与发酵工业, 2005, 31(3):75-77.

    LIU W Q, DENG Z Y, XU E N, et al. The study on bioconcentrating trace elements of selenium chromium and zinc[J]. Food and Fermentation Industries, 2005, 31(3):75-77(in Chinese).

    [16] 刘文群, 黄丽婵, 韩伟. 乳酸菌同时富集硒铬锌的初步研究[J]. 食品与机械, 2007, 23(2):41-42.

    LIU W Q, HUANG L C, HAN W. Study on sync enrichment of Se Cr and Zn by lactic acid bacteria[J]. Food & Machinery, 2005, 31(3):75-77(in Chinese).

    [17] BHAKTA J N, OHNISHI K, MUNEKAGE Y, et al. Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents[J]. Journal of Applied Microbiology, 2012, 112(6):1193-1206.
    [18] LAHTEINEN T, LINDHOLM A, RINTTILA T, et al. Effect of Lactobacillus brevis ATCC 8287 as a feeding supplement on the performance and immune function of piglets[J]. Veterinary Immunology & Immunopathology, 2014, 158(1-2):14-25.
    [19] YU M L, KIM J S, WANG J K. Optimization for the maximum bacteriocin production of Lactobacillus brevis, DF01 using response surface methodology[J]. Food Science and Biotechnology, 2012, 21(3):653-659.
    [20] SHARMA A, KAUR J, LEE S, et al. RAPD typing of Lactobacillus brevis, isolated from various food products from Korea[J]. Food Science & Biotechnology, 2016, 25(6):1651-1655.
    [21] GAO J F, ZHANG Q, WANG H, et al. Acid orange 10 dye biosorption by yeast isolated from polluted soil biomass.[J]. Bioresource Technology, 2011, 102(2):805-813.
    [22] FIOL N, VILLAESCUSA I, MARTINEZ M, et al. Sorption of Pb(Ⅱ), Ni(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) from aqueous solution by olive stone waste[J]. Separation & Purification Technology, 2006, 50(1):132-140.
    [23] EI-SAYED M T. Removal of lead(Ⅱ) by Saccharomyces cerevisiae, AUMC 3875[J]. Annals of Microbiology, 2013, 63(4):1459-1470.
    [24] NADEEM R, HANIF M A, SHAHEEN F, et al. Physical and chemical modification of distillery sludge for Pb(Ⅱ) biosorption[J]. Journal of Hazardous Materials, 2008, 150(2):335-342.
    [25] KAHARMAN S, ASMA D, ERDEMOGLU S, et al. Biosorption of copper(Ⅱ) by live and dried biomass of the white rot fungi phanerochaete chrysosporium and funalia trogii[J]. Engineering in Life Sciences, 2005, 5(1):72-77.
    [26] DHANKHAR P R, HOODA A, SOLANKI R, et al. Saccharomyces cerevisiae:A potential biosorbent for biosorption of uranium.[J]. International Journal of Engineering Science & Technology, 2011, 3(6):103-126.
    [27] MASHITAH, ZULFADHLY Z, BHATIA S. Ability of Pycnoporus sanguineus to remove copper ions from aqueous solution.[J]. Artificial Cells Blood Substitutes & Biotechnology, 2009, 27(5-6):429-433.
    [28] YILMAZ M, TAY T, KIVANC M, et al. Removal of corper(Ⅱ) ions from aqueous solution by a lactic acid bacterium.[J]. Brazilian Journal of Chemical Engineering, 2010, 27(2):309-314.
    [29] FENG M, CHEN X, LI C, et al. Isolation and identification of an exopolysaccharide-producing lactic acid bacterium strain from Chinese Paocai and biosorption of Pb(Ⅱ) by its exopolysaccharide[J]. Journal of Food Science, 2012, 77(6):T111-T117.
    [30] HU X J, WANG J S, LIU Y G, et al. Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin:Isotherms, kinetics and thermodynamics[J]. Journal of Hazardous Materials, 2011. 185(1):306-314.
  • 加载中
计量
  • 文章访问数:  1295
  • HTML全文浏览数:  1281
  • PDF下载数:  27
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-04-26
  • 刊出日期:  2019-03-15
代启虎, 李冉, 葛俊苗, 张雯, 李柏林, 欧杰. 短乳杆菌对Cr3+的吸附及动力学和热力学拟合[J]. 环境化学, 2019, 38(3): 626-634. doi: 10.7524/j.issn.0254-6108.2018042602
引用本文: 代启虎, 李冉, 葛俊苗, 张雯, 李柏林, 欧杰. 短乳杆菌对Cr3+的吸附及动力学和热力学拟合[J]. 环境化学, 2019, 38(3): 626-634. doi: 10.7524/j.issn.0254-6108.2018042602
DAI Qihu, LI Ran, GE Junmiao, ZHANG Wen, LI Bailin, OU Jie. Adsorption and kinetic and thermodynamic fitting of Lactobacillus brevis to Cr3+[J]. Environmental Chemistry, 2019, 38(3): 626-634. doi: 10.7524/j.issn.0254-6108.2018042602
Citation: DAI Qihu, LI Ran, GE Junmiao, ZHANG Wen, LI Bailin, OU Jie. Adsorption and kinetic and thermodynamic fitting of Lactobacillus brevis to Cr3+[J]. Environmental Chemistry, 2019, 38(3): 626-634. doi: 10.7524/j.issn.0254-6108.2018042602

短乳杆菌对Cr3+的吸附及动力学和热力学拟合

  • 1.  上海海洋大学食品学院, 上海, 201306;
  • 2.  上海水产品加工及贮藏工程技术研究中心, 上海, 201306;
  • 3.  农业部水产品贮藏保鲜质量安全风险评估实验室, 上海, 201306
基金项目:

国家自然科学基金(31671779)资助.

摘要: 研究了Lactobacillus brevis对水溶液中Cr(Ⅲ)的吸附作用.考察了初始pH值、接触时间、初始Cr(Ⅲ)浓度、菌体浓度和温度对Cr(Ⅲ)吸附效果的影响.结果表明,在较低的pH、温度和初始Cr(Ⅲ)离子浓度条件下,菌株对Cr(Ⅲ)离子的吸附量较低.在试验条件下,溶液初始pH、温度和初始Cr(Ⅲ)离子浓度的升高,均能提高菌株对Cr(Ⅲ)离子的吸附量.在温度为40℃、pH 6和初始Cr(Ⅲ)离子浓度为200 mg·L-1时,菌株吸附量最大.随菌体浓度升高,单位浓度菌体对Cr(Ⅲ)离子吸附量降低,但总吸附量增大,菌体浓度为6 g·L-1吸附量最大.菌株对Cr(Ⅲ)离子吸附较快,接触时间为1 h就达到平衡.用Langmuir、Freundlich、Redlich-Peterson和Temkin吸附模型进行拟合,相关的回归系数表明,吸附过程拟合Langmuir吸附模型比Freundlich、Redlich-Peterson和Temkin吸附模型好.用Elovich、准一级、准二级动力学拟合,动力学试验数据与Lagergren准二级动力学方程的拟合度最佳.

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回