东平湖菹草-上覆水-沉积物系统中汞、砷的赋存特征

殷山红, 张智博, 肖燕, 张真, 姚春霞, 邓焕广, 张菊. 东平湖菹草-上覆水-沉积物系统中汞、砷的赋存特征[J]. 环境化学, 2019, 38(3): 635-643. doi: 10.7524/j.issn.0254-6108.2018051203
引用本文: 殷山红, 张智博, 肖燕, 张真, 姚春霞, 邓焕广, 张菊. 东平湖菹草-上覆水-沉积物系统中汞、砷的赋存特征[J]. 环境化学, 2019, 38(3): 635-643. doi: 10.7524/j.issn.0254-6108.2018051203
YIN Shanhong, ZHANG Zhibo, XIAO Yan, ZHANG Zhen, YAO Chunxia, DENG Huanguang, ZHANG Ju. Distribution characteristic of mercury and arsenic in the Potamogeton crispus-overlying water-sediment system of Dongping Lake[J]. Environmental Chemistry, 2019, 38(3): 635-643. doi: 10.7524/j.issn.0254-6108.2018051203
Citation: YIN Shanhong, ZHANG Zhibo, XIAO Yan, ZHANG Zhen, YAO Chunxia, DENG Huanguang, ZHANG Ju. Distribution characteristic of mercury and arsenic in the Potamogeton crispus-overlying water-sediment system of Dongping Lake[J]. Environmental Chemistry, 2019, 38(3): 635-643. doi: 10.7524/j.issn.0254-6108.2018051203

东平湖菹草-上覆水-沉积物系统中汞、砷的赋存特征

  • 基金项目:

    国家自然科学基金(41401563),山东省自然科学基金(ZR2014JL028)和聊城大学大学生创业创新训练计划(CXCY2018163)资助.

Distribution characteristic of mercury and arsenic in the Potamogeton crispus-overlying water-sediment system of Dongping Lake

  • Fund Project: Supported by the National Natural Science Foundation of China(41401563), the National Natural Science Foundation of Shandong Province(ZR2014JL028) and Liaocheng University Students Entrepreneurship and Innovation Training Program (CXCY2018163).
  • 摘要: 为了解东平湖菹草-上覆水-沉积物系统中重金属汞(Hg)和砷(As)的含量特征及相互关系,于2015年5月菹草生长的旺盛期在东平湖沿湖采集了33个点位的菹草、上覆水和表层沉积物样品,测定了Hg和As的总量,并采用生物富集系数法评价了菹草对上覆水和表层沉积物中Hg和As的富集能力.结果表明,东平湖上覆水中Hg和As浓度的均值分别为0.769 μg·L-1和7.86 μg·L-1,以地表水环境质量Ⅲ类水标准(GB 3838-2002)为参比,As全部达标;Hg超标率为73.3%,其均值是Ⅲ类水标准值的7.7倍.表层沉积物中Hg和As的含量均值分别为0.072 mg·kg-1和17.09 mg·kg-1,分别为山东省土壤背景值的3.6倍和1.8倍.菹草中Hg和As的含量均值分别为0.169(干重)和2.11 mg·kg-1(干重).菹草对上覆水、表层沉积物中Hg、As的富集系数空间差异性较大,且对上覆水中Hg和As的富集系数(16.2-2581.9)远高于对表层沉积物中的富集系数(0.07-26.2).表层沉积物中Hg、As与有机质之间均呈显著正相关性,但Hg、As在菹草-上覆水-沉积物系统中相关性不显著,说明了该系统中Hg、As迁移的复杂性.
  • 加载中
  • [1] 蹇丽, 刘洁, 李慧君, 等. 红树林沉积物汞、砷形态分布研究——以东寨港为例[J]. 环境污染与防治, 2016, 38(7):15-24.

    JIAN L, LIU J, LI H J, et al. Speciation characteristics of Hg and As in mangrove sediments-a case study at Dongzhai Harbor[J]. Environmental Pollution & Control, 2016, 38(7):15-24(in Chinese).

    [2] 类宏程, 武周虎, 王芳, 等. 南水北调东线东平湖水流水质模拟[J]. 人民黄河, 2014, 36(7):80-83.

    LEI H C, WU Z H, WANG F, et al. Water flow and quality simulation of Dongping Lake in the East-Route of South-to-North Water Transfer Project[J]. Yellow River, 2014, 36(7):80-83(in Chinese).

    [3] 朱英. 东平湖重金属污染物分布特征及其存在形态的研究[D]. 济南:山东大学, 2005. ZHU Y. Distribution characteristics and speciation of heavy metal pollutants in Dongping Lake[D]. Ji'nan:Shandong University, 2005(in Chinese).
    [4] 张菊, 邓焕广, 陈诗越, 等. 东平湖水源地水环境健康风险初步评价[J]. 安全与环境学报, 2011, 11(6):111-115.

    ZHANG J, DENG H G, CHEN S Y, et al. Eco-environmental health risk assessment of Dongping Lake water-resources[J]. Journal of Safety and Environment, 2011, 11(6):111-115(in Chinese).

    [5] 张菊, 何振芳, 董杰, 等. 东平湖表层沉积物重金属的空间分布及污染评价[J]. 生态环境学报, 2016, 25(10):1699-1706.

    ZHANG J, HE Z F, DONG J, et al. Spatial distribution and pollution assessment of heavy metals in the surface sediments of Dongping Lake[J]. Ecology and Environmental Sciences, 2016, 25(10):1699-1706(in Chinese).

    [6] 张金路, 段登选, 王志忠. 东平湖菹草大面积衰亡的危害及防治对策[J]. 环境研究与监测, 2009,22(2):31-33.

    ZHANG J L, DUAN D X, WANG Z Z. Hazards and countermeasures of large area decline in Potamogeton crispus from Dongping Lake[J]. Environmental Study and Monitoring, 2009,22(2):31-33(in Chinese).

    [7] 胡天印, 谢佩君, 晏丽蓉, 等. 菹草对底泥中重金属污染的修复效果[J]. 生态科学, 2014, 33(6):1182-1188.

    HU T Y, XIE P J, YAN L R, et al. Repairing effect of Potamogeton crispus on heavy metal pollution in sediment[J]. Ecological Science, 2014, 33(6):1182-1188(in Chinese).

    [8] 孙超, 陈振楼, 张翠, 等. 上海市主要饮用水源地水重金属健康风险初步评价[J]. 环境科学研究, 2009, 22(1):60-65.

    SUN C, CHEN Z L, ZHANG C, et al. Health risk assessment of heavy metals in drinking water sources in Shanghai, China[J]. Researnh of Rnvirnnmental Snienres, 2009, 22(1):60-65(in Chinese).

    [9] 陶征楷, 毕春娟, 陈振楼, 等. 滴水湖沉积物中重金属污染特征与评价[J]. 长江流域资源与环境, 2014, 23(12):1714-1720.

    TAO Z K, BI C J, CHEN Z L, et al. Pollution characteristics and assessment of heavy metals in the sediments from Dishui Lake[J]. Resources and Environment in the Yangtze Basin, 2014, 23(12):1714-1720(in Chinese).

    [10] 杜森, 高祥照. 土壤分析技术规范[M]. 北京:中国农业出版社, 2006:36-39. DU S, GAO X Z. Technical specification for soil analysis[M]. Beijing:China Agriculture Press, 2006:36

    -39(in Chinese).

    [11] GRANEL T, ROBINSON B, MILLS T, et al. Cadmium accumulation by willow clones used for soil conservation, stock fodder, and phytoreinediation[J]. Australian Journal of Soil Research, 2002, 40(8):1331-1337.
    [12] LAFABRIE C, MAJOR K M, MAJOR C S, et al. Trace metal contamination of the aquatic plant Hydrilla verticillata and associated sediment in a coastal Alabama creek (Gulf of Mexico-USA)[J]. Marine Pollution Bulletin, 2013, 68:147-151.
    [13] 李庚飞. 某矿区附近不同作物对3种重金属富集能力的研究[J]. 中国农学通报, 2012, 28(26):257-261.

    LI G F. Study on the concentration capacity to three kinds of heavy metals for different crops around the gold area[J]. Chinese Agricultural Science Bulletin, 2012, 28(26):257-261(in Chinese).

    [14] 国家环境保护总局, 国家质量监督检验检疫总局. GB3838-2002, 地表水环境质量标准[S]. 北京:中国环境科学出版社, 2002. State Environmental Protection Administration of China, State Administration for Quality Supervision and Inspection and Quarantine of China. Environmental quality standards for surface water:GB 3838-2002[S], 2002

    (in Chinese).

    [15] GAMMONS H C, SLOTTON G D, GERBRANDT B, et al. Mercury concentrations of fish, river water, and sediment in the Río Ramis-Lake Titicaca watershed, Peru[J]. Sci Total Environ, 2006, 368:637-648.
    [16] 王利明, 张生, 赵胜男, 等. 乌梁素海水体重金属浓度及空间分布特征[J]. 环境与健康杂志, 2014, 31(12):1088-1089.

    WANG L M, ZHANG S, ZHAO S N, et al. Spatial distribution characteristics of heavy metals in Ulansuhai Lake[J]. Journal of Environment and Health, 2014, 31(12):1088-1089(in Chinese).

    [17] Organization WH ed. Guidelines for drinking-water quality:Recommendations[S]. World Health Organization, 2004.
    [18] 环境保护部. GB15618-1995, 土壤环境质量标准[S]. 北京:中国标准出版社, 2006. Ministry of Environmental Protection of the People's Republic of China. Environmental quality standard for soils:GB 15618-1995[S]. Beijing:Standards Press of China, 2006

    (in Chinese).

    [19] 刘良, 张祖陆. 南四湖表层沉积物重金属的空间分布、来源及污染评价[J]. 水生态学杂志, 2013, 34(6):7-15.

    LIU L, ZHANG Z L. Spatial distribution, sources and pollution assesment of heavy metals in the surface sediments of Nansihu Lake[J]. Journal of Hydroecology, 2013, 34(6):7-15(in Chinese).

    [20] VIGANÒ L, ARILLO A, BUFFAGNI A, et al. Quality assessment of bed sediments of Po River (Itality)[J]. Water Research, 2003, 37(3):501-518.
    [21] 中国环境监测总站. 中国土壤元素背景值[M]. 北京:中国环境科学出版社, 1990:329-493. Environmental Monitoring Station. Background value of soil elements in China[M]. Beijing:China Environment Science Press, 1990:329

    -493(in Chinese).

    [22] 孙宇婷, 王海云, 张婷, 等. 武汉东湖水生植物重金属分布现状研究[J]. 长江科学院院报, 2016, 33(6):8-11.

    SUN Y T, WANG H Y, ZHANG T Y, et al. Distribution of heavy metals in hydrophytes from the East Lake of Wuhan[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(6):8-11(in Chinese).

    [23] WILDING L P. Spatial variability:Its documentation, accommodation and implication to soil surveys[M]//NIELSEN D R, BOUMA J. Soils Spatial Variability. Wageningen:PUDOC publishers, 1985:166-194.
    [24] 高海荣, 陈秀丽, 赵爱娟, 等. 5种沉水植物对重金属富集能力的对比研究[J]. 环境保护科学, 2016, 42(4):101-105.

    GAO H R, CHEN X L, ZHAO A J, et al. Comparison of heavy metal accumulation by five submerged macrophytes[J]. Environmental Protection Science, 2016, 42(4):101-105(in Chinese).

    [25] 高静湉, 杜方圆, 李卫平, 等. 黄河湿地小白河片区优势植物重金属的富集特征[J]. 农业环境科学学报, 2016, 35(11):2180-2186.

    GAO J T, DU F Y, LI W P, et al. Content and accumulation characteristics of heavy metals in dominant plants in Xiaobaihe Area of the Yellow River Wetland[J]. Journal of Agro-Environment Science, 2016, 35(11):2180-2186(in Chinese).

    [26] 杜璟. 水生植被恢复对沉积物重金属迁移转化的影响[D]. 上海:华东师范大学, 2011. DU J. Effects of aquatic vegetation restoration on migration and transformation of heavy metals in sediments[D]. Shanghai:East China Normal University, 2011(in Chinese).
    [27] 关小红, 李修华, 姜利, 等. 氧化-混凝法去除水中As(Ⅲ)的研究进展[J]. 环境科学与技术, 2009, 32(8):88-92.

    GUAN X H, LI X H, XIANG L, et al. Review on As(Ⅲ) removal by oxidation and subsequent coagulation[J]. Environmental Science & Technology, 2009, 32(8):88-92(in Chinese).

    [28] 田渭花, 王蕾, 关建玲, 等. 渭河陕西段水体重金属污染现状及其来源探析[J]. 环境工程技术学报, 2017, 7(6):684-690.

    TIAN W H, WANG L, GUAN J L, et al. Heavy metal pollution and source analysis of Weihe River Shaanxi Province[J]. Journal of Environmental Engineering Technology, 2017, 7(6):684-690(in Chinese).

    [29] 王洪涛, 张俊华, 丁少峰, 等. 开封城市河流表层沉积物重金属分布、污染来源及风险评估[J]. 环境科学学报, 2016, 36(12):4520-4530.

    WANG H T, ZHANG J H, DING S F, et al. Distribution characteristics, sources identification and risk assessment of heavy metals in surface sediments of urban rivers in Kaifeng[J]. Acta Scientiae Circumstantiae, 2016, 36(12):4520-4530(in Chinese).

    [30] GOLIMOWSKI J, SZCZEPAŃSKA T. Voltammetric method for the determination of Zn, Cd, Pb, Cu and Ni in interstitial water[J]. Fresenius' Journal of Analytical Chemistry, 1996, 354(5-6):735-737.
    [31] 潘义宏, 王宏镔, 谷兆萍, 等. 大型水生植物对重金属的富集与转移[J]. 生态学报, 2010, 30(23):6430-6441.

    PAN Y H, WANG H B, GU Z P, et al. Accumulation and translocation of heavy metals by macrophytes[J]. Acta Ecologica Sinica, 2010, 30(23):6430-6441(in Chinese).

    [32] DENG H G, ZHANG J, CHEN S Y, et al. Metal release/accumulation during the decomposition of Potamogeton crispus in a shallow macrophytic lake[J]. Journal of Environmental Sciences, 2016, 42(4):71-78.
  • 加载中
计量
  • 文章访问数:  985
  • HTML全文浏览数:  976
  • PDF下载数:  43
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-05-12
  • 刊出日期:  2019-03-15
殷山红, 张智博, 肖燕, 张真, 姚春霞, 邓焕广, 张菊. 东平湖菹草-上覆水-沉积物系统中汞、砷的赋存特征[J]. 环境化学, 2019, 38(3): 635-643. doi: 10.7524/j.issn.0254-6108.2018051203
引用本文: 殷山红, 张智博, 肖燕, 张真, 姚春霞, 邓焕广, 张菊. 东平湖菹草-上覆水-沉积物系统中汞、砷的赋存特征[J]. 环境化学, 2019, 38(3): 635-643. doi: 10.7524/j.issn.0254-6108.2018051203
YIN Shanhong, ZHANG Zhibo, XIAO Yan, ZHANG Zhen, YAO Chunxia, DENG Huanguang, ZHANG Ju. Distribution characteristic of mercury and arsenic in the Potamogeton crispus-overlying water-sediment system of Dongping Lake[J]. Environmental Chemistry, 2019, 38(3): 635-643. doi: 10.7524/j.issn.0254-6108.2018051203
Citation: YIN Shanhong, ZHANG Zhibo, XIAO Yan, ZHANG Zhen, YAO Chunxia, DENG Huanguang, ZHANG Ju. Distribution characteristic of mercury and arsenic in the Potamogeton crispus-overlying water-sediment system of Dongping Lake[J]. Environmental Chemistry, 2019, 38(3): 635-643. doi: 10.7524/j.issn.0254-6108.2018051203

东平湖菹草-上覆水-沉积物系统中汞、砷的赋存特征

  • 1.  聊城大学环境与规划学院, 聊城, 252059;
  • 2.  上海市农业科学院农产品质量标准与检测技术研究所, 上海, 201403
基金项目:

国家自然科学基金(41401563),山东省自然科学基金(ZR2014JL028)和聊城大学大学生创业创新训练计划(CXCY2018163)资助.

摘要: 为了解东平湖菹草-上覆水-沉积物系统中重金属汞(Hg)和砷(As)的含量特征及相互关系,于2015年5月菹草生长的旺盛期在东平湖沿湖采集了33个点位的菹草、上覆水和表层沉积物样品,测定了Hg和As的总量,并采用生物富集系数法评价了菹草对上覆水和表层沉积物中Hg和As的富集能力.结果表明,东平湖上覆水中Hg和As浓度的均值分别为0.769 μg·L-1和7.86 μg·L-1,以地表水环境质量Ⅲ类水标准(GB 3838-2002)为参比,As全部达标;Hg超标率为73.3%,其均值是Ⅲ类水标准值的7.7倍.表层沉积物中Hg和As的含量均值分别为0.072 mg·kg-1和17.09 mg·kg-1,分别为山东省土壤背景值的3.6倍和1.8倍.菹草中Hg和As的含量均值分别为0.169(干重)和2.11 mg·kg-1(干重).菹草对上覆水、表层沉积物中Hg、As的富集系数空间差异性较大,且对上覆水中Hg和As的富集系数(16.2-2581.9)远高于对表层沉积物中的富集系数(0.07-26.2).表层沉积物中Hg、As与有机质之间均呈显著正相关性,但Hg、As在菹草-上覆水-沉积物系统中相关性不显著,说明了该系统中Hg、As迁移的复杂性.

English Abstract

参考文献 (32)

返回顶部

目录

/

返回文章
返回