高压脉冲放电协同LaMn1-xFexO3钙钛矿型催化剂去除NOx

董冰岩, 李琼, 甘青青, 赵旭武. 高压脉冲放电协同LaMn1-xFexO3钙钛矿型催化剂去除NOx[J]. 环境化学, 2019, 38(4): 894-902. doi: 10.7524/j.issn.0254-6108.2018061201
引用本文: 董冰岩, 李琼, 甘青青, 赵旭武. 高压脉冲放电协同LaMn1-xFexO3钙钛矿型催化剂去除NOx[J]. 环境化学, 2019, 38(4): 894-902. doi: 10.7524/j.issn.0254-6108.2018061201
DONG Bingyan, LI Qiong, GAN Qingqing, ZHAO Xuwu. Removal of NOxby high voltage pulse discharge combined with LaMn1-xFexO3 perovskite catalysts[J]. Environmental Chemistry, 2019, 38(4): 894-902. doi: 10.7524/j.issn.0254-6108.2018061201
Citation: DONG Bingyan, LI Qiong, GAN Qingqing, ZHAO Xuwu. Removal of NOxby high voltage pulse discharge combined with LaMn1-xFexO3 perovskite catalysts[J]. Environmental Chemistry, 2019, 38(4): 894-902. doi: 10.7524/j.issn.0254-6108.2018061201

高压脉冲放电协同LaMn1-xFexO3钙钛矿型催化剂去除NOx

  • 基金项目:

    国家自然科学基金(51567010)资助.

Removal of NOxby high voltage pulse discharge combined with LaMn1-xFexO3 perovskite catalysts

  • Fund Project: Supported by National Natural Science Foundation of China (51567010).
  • 摘要: 高压脉冲放电协同催化剂技术是目前最具有前景的去除NOx的方法之一,本文以氮氧化物为处理对象,通过脉冲放电协同LaMn1-xFexO3钙钛矿型催化剂去除NOx.采用柠檬酸-EDTA溶胶凝胶法制备LaMnO3钙钛矿催化剂,对该催化剂掺杂Fe元素,改变催化剂制备时的焙烧温度,探究催化剂协同脉冲放电在不同反应温度、催化剂投加量等因素下对NO转化、NO2生成和NOx的去除效果的影响,从而达到提高氮氧化物的去除率、降低能耗等目的.同时结合XRD、SEM、BET等表征手段对催化剂进行表征.结果表明,在催化剂LaMn1-xFexO3中,随着Fe掺杂比的增加,NO转化率出现先增大后逐渐减小的趋势;随着催化剂的焙烧温度增加,NO转化率出现逐渐减小的趋势;随着催化剂投加量的增加,NOx去除率不断增大后趋于稳定.在放电频率为30 Hz、脉冲电压为30 kV、Fe的掺杂比为0.3、焙烧温度为700℃、投加量为1.6 g、反应温度为300℃的条件下,NOx的去除率为62.15%.
  • 加载中
  • [1] 林晓芬,张军,尹艳山,等.烟气脱硫脱氮技术综述[J].能源环境保护,2014,28(1):1-4.

    LIN X F, ZHANG J, YIN Y S, et al. A review of flue gas desulfurization and denitrification technology[J]. Energy Environmental Protection, 2014, 28(1):1-4(in Chinese).

    [2] 黄诗坚.NOx的危害及其排放控制[J].能源环境保护,2004,20(1):24-25.

    HUANG S J. The harm of NOx and its emission control[J]. Power Environmental Protection, 2004, 20(1):24-25(in Chinese).

    [3] 刘育松,高凤雨,唐晓龙,等.制备条件对锰氧化物SCR 脱硝性能的影响[J].环境工程学报,2016,10(1):295-300.

    LIU Y S, GAO F Y, TANG X L, et al. Effect of preparation conditions on the De-NOx performance of manganese oxide SCR[J]. Journal of Environmental Engineering, 2016, 10(1):295-300(in Chinese).

    [4] LI J, CHANG H, MA L, et al. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts:A review[J]. Catalysis Today, 2011, 175(1):147-156.
    [5] 陈冬林,曾 稀,盘思伟,等.钒基活化液增活V2O5 -WO3 -MoO3/TiO2催化剂的实验研究[J].环境工程学报,2015,9(2):847-854.

    CHEN D L, ZENG X, PAN S W, et al. Experimental study on activation of V2O5-WO3 -MoO3/TiO2 catalysts with vanadium-based activation solution[J]. Journal of Environmental Engineering, 2015, 9(2):843-854(in Chinese).

    [6] XIAO X, SHENG Z, YANG L, et al. Low-temperature selective catalytic reduction of NOx with NH3 over manganese and cerium oxides composite with graphene prepared by hydrothermal method[J]. Catalysis Science & Technology, 2015, 6(5):1507-1514.
    [7] ZHANG Y P, WANG L F. Promotional roles of ZrO2 and WO3 in V2O5-WO3/TiO2-ZrO2 catalysts for NOx reduction by NH3:Catalytic performance, morphology, and reaction mechanism[J]. Chinese Journal of Catalysis, 2016, 37(11):1918-1930.
    [8] NAKATSUJI T, MIYAMOTO A. Removal technology for nitrogen oxides and sulfur oxides from exhaust gases[J]. Catalysis Today, 1991, 10(1):21-31.
    [9] LI X G, DONG Y H, XIAN H. De-NOx in alternative lean/rich atmospheres on La1-xSrxCoO3 perovskite[J]. Energy & Environmental Science, 2011, 1:3351-3354.
    [10] IWAMOTO M, HAMARDE H, CATAL. Today, removal of nitrogen monoxide from exhaust gases through novel catalytic processes[J]. Catalysis Today, 1991, 10(1):57-71.
    [11] HELD W, K NIG A, RICHTER T, et al. Catalytic NOx reduction in net oxidizing exhaust gas[J]. Emissions, 1990, 99:209-216..
    [12] TUREK W, PLIS A, COSTA P D, et al. Investigation of oxide catalysts activity in the NOx, neutralisation with organic reductants[J]. Applied Surface Science, 2010, 256(17):5572-5575.
    [13] BETHKE K A, ALT D, KUNG M C. NO reduction by hydrocarbons in an oxidizing atmosphere over transition metal-zirconium mixed oxides[J]. Catalysis Letters, 1994, 25(1-2):37-48.
    [14] ZHANG X K, WALTERS A B, VANNICE M A. NO Adsorption, decomposition, and reduction by methane over rare earth oxides[J]. Journal of Catalysis, 1995, 155(2):290-302.
    [15] 孙志强,王虹,任晓光.La-Na-Co-Mn-O系钙钛矿型催化剂同时去除柴油机碳颗粒和NOx性能的研究[J]. 环境科学保护,2007,33(4):4-7.

    SUN Z Q, WANG H, REN X G. Investigationof catalytic activity of La-Na-Co-Mn-O perovskite-type oxides for simultaneous removal of diesel soot particulatesand NOx[J]. Environmental Science Protection, 2007, 33(4):4-7(in Chinese).

    [16] 彭小圣,林赫,黄霞,等.采用钙钛矿型催化剂 (La0. 8K0. 2Cu0. 05Mn0. 95O3)同时催化去除NOx和碳烟的研究[J].环境科学学报,2006,26(5):779-784.

    PENG X S, LIN H, HUANG X, et al. Investigation of catalytic removal of NOx and soot over La0.8K0.2Cu0.05Mn0.95O3[J]. Journal of Environmental Science, 2006, 26(5):779-784(in Chinese).

    [17] 白敏菂,毛首蕾,朱玉鹏,等.O2+、O3同时脱硫脱硝实验[J].中国环境科学,2014,34(2):324-330.

    BAI M D, MAO S L, ZHU Y P, et al. Simultaneous desulfurization and denitrification of O2+ and O3[J].China Environmental Science, 2014, 34(2):324-330(in Chinese).

    [18] 董冰岩,聂亚林,宿雅威,等.双极性高压脉冲介质阻挡放电降解甲醛及臭氧生成质量浓度控制[J].高电压技术,2016,42(5):1373-1378.

    DONG B Y, NIE Y L, SU Y W, et al.The degradation of formaldehyde and ozone formation by concentration control of bipolar high voltage pulse dielectric barrier discharge[J]. High Voltage Engineering, 2016, 42(5):1373-1378(in Chinese).

    [19] 王艳辉,张瑞丽,孙继忠,等.脉冲介质阻挡放电脱除N2/NO体系中NO的模拟研究[J].高电压技术,2016,42(2):405-413.

    WANG Y H, ZHANG R L, SUN J Z, et al. Simulation study on removal of NO in N2/NO system by pulse dielectric barrier discharge[J]. High Voltage Engineering, 2016, 42(2):405-413(in Chinese).

    [20] 王飞飞,李树然,闫克平.电弧放电产生NOx及其对亚硫酸铵的氧化[J].环境工程学报,2015,9(1):281-287.

    WANG F F, LI S R, YAN K P. Generation of NOx by arc discharge and its oxidation of ammonium sulfite[J]. Journal of Environmental Engineering, 2015, 9(1):281-287(in Chinese).

    [21] PENETRANTE B M, BRUSASCO R M, MERRITT B T,et al. Plasma-assisted catalytic reduction of NOx[R]. DTIC Document, 1998.
  • 加载中
计量
  • 文章访问数:  840
  • HTML全文浏览数:  830
  • PDF下载数:  22
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-06-12
  • 刊出日期:  2019-04-15

高压脉冲放电协同LaMn1-xFexO3钙钛矿型催化剂去除NOx

  • 1.  江西理工大学资源与环境工程学院, 赣州, 341000;
  • 2.  江西省矿冶环境污染控制重点实验室, 赣州, 341000
基金项目:

国家自然科学基金(51567010)资助.

摘要: 高压脉冲放电协同催化剂技术是目前最具有前景的去除NOx的方法之一,本文以氮氧化物为处理对象,通过脉冲放电协同LaMn1-xFexO3钙钛矿型催化剂去除NOx.采用柠檬酸-EDTA溶胶凝胶法制备LaMnO3钙钛矿催化剂,对该催化剂掺杂Fe元素,改变催化剂制备时的焙烧温度,探究催化剂协同脉冲放电在不同反应温度、催化剂投加量等因素下对NO转化、NO2生成和NOx的去除效果的影响,从而达到提高氮氧化物的去除率、降低能耗等目的.同时结合XRD、SEM、BET等表征手段对催化剂进行表征.结果表明,在催化剂LaMn1-xFexO3中,随着Fe掺杂比的增加,NO转化率出现先增大后逐渐减小的趋势;随着催化剂的焙烧温度增加,NO转化率出现逐渐减小的趋势;随着催化剂投加量的增加,NOx去除率不断增大后趋于稳定.在放电频率为30 Hz、脉冲电压为30 kV、Fe的掺杂比为0.3、焙烧温度为700℃、投加量为1.6 g、反应温度为300℃的条件下,NOx的去除率为62.15%.

English Abstract

参考文献 (21)

目录

/

返回文章
返回