铁源对Fe/ZSM-5催化剂氨选择性催化还原NO的影响
Effects of Fe sources on catalytic performance of Fe/ZSM-5 for the selective catalytic reduction of NO with NH3
-
摘要: 采用浸渍法,在相同的铁含量条件下,以硝酸铁、氯化亚铁、硫酸亚铁为前驱体制备了3种不同铁源Fe/ZSM-5分子筛催化剂.研究了铁源对Fe/ZSM-5催化剂NH3-SCR活性的影响,并采用X射线衍射(XRD)、比表面积和孔结构(BET)、X射线光电子能谱(XPS)、氢气程序升温还原(H2-TPR)及氨程序升温脱附(NH3-TPD)等表征手段对催化剂的结构和理化性质进行测定.结果表明,不同的铁源对Fe/ZSM-5催化剂低温段(低于350℃)的NH3-SCR催化性能影响较大,其低温活性顺序为:Fe(Cl)/ZSM-5 > Fe(S)/ZSM-5 > Fe(N)/ZSM-5.以氯化亚铁为铁源的Fe(Cl)/ZSM-5催化剂取得最佳的NH3-SCR催化活性,在233℃时NO转化率达到90%.表征结果表明,样品Fe(Cl)/ZSM-5中形成了最多的孤立Fe3+物种及中酸位数量.孤立Fe3+物种有利于增强Fe/ZSM-5催化剂的低温还原性能,改性过程中形成的中等强度酸性位有利于提高催化剂低温NH3-SCR催化性能.Abstract: With the same iron content, three types of Fe/ZSM-5 molecular sieve catalysts with different iron sources (ferrous nitrate, ferrous chloride and ferrous sulfate) were prepared by impregnation method. The effects of iron sources on the NH3-SCR performance of Fe/ZSM-5 catalysts were investigated and the physicochemical properties of the samples were characterized by XRD, BET, XPS, H2-TPR and NH3-TPD techniques. The results indicated that iron source had a great influence on the low-temperature (3-SCR performance of Fe/ZSM-5 catalysts. The order of activity of those catalysts at low temperatures was as follows:Fe(Cl)/ZSM-5 > Fe(S)/ZSM-5 > Fe(N)/ZSM-5. The sample with ferrous chloride as precursor obtained the best NH3-SCR activity, and the NO conversion of Fe(Cl)/ZSM-5 reached 90% at 233℃. Characterization result showed that the Fe(Cl)/ZSM-5 sample possessed the largest amount of isolated Fe3+ species and moderately acidic sites. Isolated Fe3+ species is beneficial to enhance the low temperature reduction performance of the Fe/ZSM-5 catalyst, and moderately acidic sites are favorable for the low-temperature catalytic performance.
-
Key words:
- iron sources /
- Fe/ZSM-5 /
- NH3-SCR /
- NOx removal
-
[1] JIANG S Y,ZHOU R X. Ce doping effect on performance of the Fe/β catalyst for NOx reduction by NH3[J]. Fuel processing technology,2015,133:220-226. [2] KIM Y J,KWON H J,ILJEONG H,et al. Mn-Fe/ZSM5 as a low-temperature SCR catalyst to remove NOx from diesel engine exhaust[J]. Applied catalysis B: Bnvironmental,2012,126:9-21. [3] 孙亮,许悠佳,曹青青,等. 氧化锰基催化剂低温NH3选择性还原NOx反应及其机理[J]. 化学进展,2010,22(10):1882-1890. SUN L,XU Y,CAO Q,et al. Reactions and mechanisms of low-temperature selective catalytic reduction of NOx by NH3 over manganese oxide-based catalysts[J]. Progress in Chemistry,2010,22(10):1882-1890 (in Chinese).
[4] DING S P,LIU F D,SHI X Y,et al. Promotional effect of Nb additive on the activity and hydrothermal stability for the selective catalytic reduction of NOx with NH3 over CeZrOx catalyst[J]. Applied catalysis B: Environmental,2016,180:766-774. [5] XIA Y,ZHAN W,GUO Y,et al. Fe-Beta zeolite for selective catalytic reduction of NOx with NH3: Influence of Fe content[J]. Chinese Journal of Catalysis,2016,37(12):2069-2078. [6] ROMERO-SAEZ M, DIVAKAR D, ARANZABAL A, et al. Catalytic oxidation of trichloroethylene over Fe-ZSM-5: Influence of the preparation method on the iron species and the catalytic behavior[J]. Applied catalysis B: Environmental,2016,180:210-218. [7] GAO F,KOLLAR M,KUKKADAPU R K,et al. Fe/SSZ-13 as an NH3-SCR catalyst: A reaction kinetics and FTIR/Mossbauer spectroscopic study[J]. Applied Catalysis B: Environmental,2015,164:407-419. [8] 石晓燕,刘福东,单文坡,等. 水热老化对不同方法制备的Fe-ZSM-5用于NH3选择性催化还原NOx的影响[J]. 催化学报,2012,33(3):454-464. SHI X Y,LIU F D,SHAN W P,et al. Hydrothermal deactivation of Fe/ZSM-5 prepared by different methods for the selective catalytic reduction of NOx with NH3[J]. Chinese Journal of Catalysis,2012,33(3):454-464 (in Chinese).
[9] GAO F,ZHENG Y,KUKKADAPU R K,et al. Iron loading effects in Fe/SSZ-13 NH3-SCR catalysts: Nature of the Fe ions and structure-function relationships[J]. ACS Catalysis,2016,6:2939-2954. [10] BRANDENBERGER S,KROCHER O,TISSLER A,et al. The determination of the activities of different iron species in Fe-ZSM-5 for SCR of NO by NH3[J]. Applied catalysis B: Environmental,2010,95:348-357. [11] BIN F,SONG C L,LV G,et al. Selective catalytic reduction of nitric oxide with ammonia over zirconium-doped copper/ZSM-5 catalysts[J]. Applied Catalysis B: Environmental,2014,150-151:532-543. [12] PANG L,FAN C,SHAO L,et al. The Ce doping Cu/ZSM-5 as a new superior catalyst to remove NO from diesel engine exhaust[J]. Chemical Engineering Journal,2014,253:394-401. [13] 王坤鹏,宋崇林,宾峰,等. Cu/ZSM-5分子筛催化剂SCR催化性能[J]. 燃烧科学与技术,2012,18:73-78. WANG K P,SONG C L,BIN F,et al. Performance of selective catalytic reduction over Cu/ZSM-5 zeolite catalysts[J]. Journal of Combustion Science and Technology,2012,18:73-78 (in Chinese).
[14] BUKHTIYAROVA G A,BUKHTIYAROVA V I,SAKAEVA N S,et al. XPS study of the silica-supported Fe-containing catalysts for deep or partial H2S oxidation[J]. Journal of Molecular Catalysis A: Chemical,2000,158:251-255. [15] ATES A. Characteristics of Fe-exchanged natural zeolites for the decomposition of N2O and its selective catalytic reduction with NH3[J]. Applied catalysis B: Environmental,2007,76:282-290. [16] ATES A,REITZMANN A,WATERS G. Surface oxygen generated upon N2O activation on iron containing ZSM-5 type zeolites with different elemental composition[J]. Applied Catalysis B: Environmental,2012,119-120:329-339. [17] YUAN E,WU G,DAI W,et al. One-pot construction of Fe/ZSM-5 zeolites for the selective catalytic reduction of nitrogen oxides by ammonia[J]. Catalysis Science and Technology,2017,7:3036-3044. [18] QI G,YANG R T. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe/ZSM-5 catalysts[J]. Applied Catalysis A: General,2005,287(1):25-33. [19] SHI X,HE H,XIE L. The effect of Fe species distribution and acidity of Fe-ZSM-5 on the hydrothermal stability and SO2 and hydrocarbons durability in NH3-SCR reaction[J]. Chinese Journal of Catalysis,2015,36:649-656. [20] CHEN P,JABLONSKA M,WEIDE P,et al. Formation and effect of NH4+ intermediates in NH3-SCR over Fe-ZSM-5 zeolite catalysts[J]. American Chemical Society,2016,6:7696-7700. [21] DOU B J,LV G,WANG C,et al. Cerium doped copper/ZSM-5 catalysts used for the catalytic reduction of nitrogen oxide with ammonia[J]. Chemical Engineering Journal,2015,270(2):549-556. [22] BRANDENBERGER S,KROCHER O,WOKAUN A,et al. The role of Brønsted acidity in the selective catalytic reduction of NO with ammonia over Fe-ZSM-5[J]. Journal of Catalysis,2009,268:297-306.
计量
- 文章访问数: 1455
- HTML全文浏览数: 1442
- PDF下载数: 33
- 施引文献: 0