近10年中国典型农田生态系统水体pH和矿化度变化特征

刘旭艳, 张心昱, 袁国富, 朱治林, 唐新斋, 孙晓敏. 近10年中国典型农田生态系统水体pH和矿化度变化特征[J]. 环境化学, 2019, 38(6): 1214-1222. doi: 10.7524/j.issn.0254-6108.2018081503
引用本文: 刘旭艳, 张心昱, 袁国富, 朱治林, 唐新斋, 孙晓敏. 近10年中国典型农田生态系统水体pH和矿化度变化特征[J]. 环境化学, 2019, 38(6): 1214-1222. doi: 10.7524/j.issn.0254-6108.2018081503
LIU Xuyan, ZHANG Xinyu, YUAN Guofu, ZHU Zhilin, TANG Xinzhai, SUN Xiaomin. Decadal variations in pH and salinity of waters in typical agro-ecosystems in China[J]. Environmental Chemistry, 2019, 38(6): 1214-1222. doi: 10.7524/j.issn.0254-6108.2018081503
Citation: LIU Xuyan, ZHANG Xinyu, YUAN Guofu, ZHU Zhilin, TANG Xinzhai, SUN Xiaomin. Decadal variations in pH and salinity of waters in typical agro-ecosystems in China[J]. Environmental Chemistry, 2019, 38(6): 1214-1222. doi: 10.7524/j.issn.0254-6108.2018081503

近10年中国典型农田生态系统水体pH和矿化度变化特征

  • 基金项目:

    国家重点研发计划(2017YFC0503801)资助.

Decadal variations in pH and salinity of waters in typical agro-ecosystems in China

  • Fund Project: Supported by the National Key R&D Program of China(2017YFC0503801).
  • 摘要: 选取中国生态系统研究网络(CERN)12个典型农田生态系统,2004-2006年和2014-2016年降水、地表水、地下水pH和矿化度的监测数据,分析中国典型农田生态系统10年间pH和矿化度的变化特征.结果表明,红壤丘陵区降水、地表水、地下水pH最低.10年间桃源、千烟洲降水pH显著降低,且2014-2016年pH 黄土高原 > 东北平原 > 长江三角洲 > 川中丘陵 > 红壤丘陵区.其中禹城(936-1183 mg·L-1)最高,鹰潭和千烟洲最低(25-87 mg·L-1).10年间桃源和千烟洲地表水矿化度降低138 mg·L-1和62 mg·L-1,其余农田生态系统变化不显著;地下水矿化度禹城(1594-2094 mg·L-1)最高,为Ⅳ类地下水(1000-2000 mg·L-1);封丘、栾城、安塞、常熟、盐亭、沈阳(319-750 mg·L-1)其次,为Ⅲ类(500-1000 mg·L-1)或Ⅱ类(300-500 mg·L-1);其余生态系统达Ⅰ类(-1)地下水标准.10年间禹城地下水矿化度增加500 mg·L-1,沈阳、长武、盐亭、千烟洲、常熟站、桃源降低102-384 mg·L-1.不同空间格局、地质结构差异、化石燃料燃烧、人类活动(耕作、施肥、灌溉)是造成农田生态系统各水体pH和矿化度变化的主要原因.本研究结果为生态系统水体酸碱度、矿化度评估及其长期动态变化提供数据依据.
  • 加载中
  • [1] SMITH R A. Air and rain:The beginnings of a chemical climatology[M]. Longmans:Green and Company,1872.
    [2] 吴玺,梁婵娟.模拟酸雨对水稻根系激素含量与生长的影响[J].环境化学,2016,35(3):568-574.

    WU X, LIANG C J. Effects of simulated acid rain on hormone concentration and growth of rice roots[J]. Environmental Chemistry,2016,35(3):568-574(in Chinese).

    [3] BELL J N B. Effects of acid deposition on crops and forests[J]. Experientia.1986,42:363-371.
    [4] SCHWARTZ S E. Acid deposition:unraveling a regional phenomenon[J]. Science, 1989,243:753-763.
    [5] SINGH A, AGRAWAL M. Acid rain and its ecological consequences[J]. Journal of Environmental Biology, 2008,29:15-24.
    [6] QIU Q Y, WU J P, LIANG G H, et al. Effects of simulated acid rain on soil and soil solution chemistry in a monsoon evergreen broad-leaved forest in southern China[J]. Environmental Monitoring and Assessment, 2015,187:271-283.
    [7] YU H L, HE N P, WANG Q F, et al. Development of atmospheric acid deposition in China from the 1990s to the 2010s[J]. Environmental Pollution, 2017,231:182-190.
    [8] DENTENER F, DREVET J, LAMARQUE J, et al. Nitrogen and sulfur deposition on regional and global scales:A multimodel evaluation[J]. Global Biogeochemical Cycles, 2006,20(4):4003.
    [9] JIA Y L, YU G R, HE N P, et al. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity[J]. Science Reports, 2014,4,3763.
    [10] 李小玉,宋冬梅,肖笃宁.石羊河下游民勤绿洲地下水矿化度的时空变异[J].地理学报,2005,60(2):319-327.

    LI X Y, SONG D M, XIAO M N. The variability of groundwater mineralization in minqin oasis[J]. Acta Geographica Sinica, 2005,60(2):319-327(in Chinese).

    [11] 马兴旺,朱靖容,李保国.绿洲土地利用对地下水矿化度时空变化影响的定量评估[J].自然资源学报,2009,24(3):466-475.

    MA X W, ZHU J R, LI B G. Quantitative evaluation of temporal-spatial change of groundwater mineralization resulted from land use in oasis[J]. Journal of Natural Resources,2009,24(3):466-475(in Chinese).

    [12] 宋香静,李胜男,郭嘉,等.不同盐分水平对柽柳扦插苗根系生长及生理特性的影响[J].生态学报,2018,38(2):606-614.

    SONG X J, LI S N, GUO J, et al. Effects of different salinity levels on the growth and physiological characteristics of roots of Tamarix chinensis cuttings[J]. Acta Ecologica Sinica, 2018,38(2):606-614(in Chinese).

    [13] OLSON J R, HAWKINS C P. Effects of total dissolved solids on growth and mortality predict distributions of stream macroinvertebrates[J]. Freshwater Biology,2017,62(4):779-791.
    [14] 刘忠珍,许桂芝,欧俊,等. 广东地热水资源农用适宜性评价[J].自然资源学报,2011,26(1):128-134.

    LIU Z Z, XU G Z, OU J, et al. Evaluation of agricultural suitability on geothermal water in Guangdong[J]. Journal of Natural Resources,2011,26(1):128-134(in Chinese).

    [15] SHARMAA A, KUNDUA S S, TARIQA H, et al. Impact of total dissolved solids in drinking water on nutrient utilization and growth performance of Murrah buffalo calves[J]. Livestock Science,2017,198:17-23.
    [16] XIE J, ZHANG X Y, XU Z W, et al. Total phosphorus concentrations in surface water of typical agro-and forest ecosystems in China,2004-2010[J]. Frontiers of Environmental Science & Engineering,2014,8(4):564-569.
    [17] 中国生态系统研究网络科学委员会.陆地生态系统水环境观测规范[M].北京:中国环境科学出版社.2007. CERN Science Commission. Protocols for standard water environmental observation and measurement in terrestrial ecosystems[M]. Beijing:China Environmental Science Press, 2007(in Chinese).
    [18] 刘炳江,郝吉明,贺克斌,等. 中国酸雨和二氧化硫污染控制区区划及实施政策研究[J]. 中国环境科学,1998, 18(1):1-7.

    LIU B J, HAO J M, HE K B, et al. Study on designation of acid rain and SO2 pollution control areas and policy implementation[J]. China Environmental Science,1998,18(1):1-7(in Chinese).

    [19] JIA J J, GAO Y. Acid deposition and assessment of its critical load for the environmental health of waterbodies in a subtropical watershed, China[J]. Journal of Hydrology, 2017,555:155-168.
    [20] 郝卓,高扬,张进忠,等.南方红壤区氮沉降特征及其对流域氮输出的影响[J].环境科学,2015,36(5):1630-1638.

    HAO Z, GAO Y, ZHANG J Z, et al. Characteristics of atmospheric nitrogen wet deposition and associated impact on N transport in the watershed of red soil area in southern China[J]. Environmental Science, 2015,36(5):1630-1638(in Chinese).

    [21] 陈建平,李艳,董思宏,等.江西千烟洲农业生态系统水环境氮污染研究[J].水资源与水工程学报,2012,23(6):51-54.

    CHEN J P, LI Y, DONG S H, et al. Study on N pollution of water environment of agricultural ecosystem in Qianyanzhou, Jiangxi Province[J]. Journal of Water Resources & Water Engineering, 2012,23(6):51-54(in Chinese).

    [22] 沈青.地表水中藻类代谢对pH和含氧量影响分析[J].环境科学与技术, 2011,34(12H):261-262.

    SHEN Q. Analyses on the influence of algae metabolism on pH and DO in surface water[J]. Environmental Science & Technology, 2011, 34(12H):261-262(in Chinese).

    [23] 张玉玺,孙继朝,黄冠星,等.珠江三角洲地区浅层地下水铍的分布及成因探讨[J].中国地质,2011,38(1):197-203.

    ZHANG Y X, SUN J C, HUANG G X, et al. Characteristics and preliminary analyses of the formation of pH in shallow groundwater in the Pearl River delta[J]. Hydrogeology & Engineering geology, 2011,38(1):197-203(in Chinese).

    [24] 张心昱,孙晓敏,袁国富,等.中国生态系统研究网络水体pH和矿化度监测数据初步分析[J].地球科学进展,2009,24(9):1042-1050.

    ZHANG X Y, SUN X M, YUAN G F, et al. Primary analysis of water of pH and salinity monitoring data on Chinese ecosystem research network[J]. Advances in Earth Science,2009,24(9):1042-1050(in Chinese).

    [25] 孙月,毛晓敏,杨秀英,等.西北灌区地下水矿化度变化及其对作物的影响[J].农业工程学报,2010,26(2):103-107.

    SUN Y, MAO X M, YANG X Y, et al. Variation of groundwater salinity and its influence on crops in irrigation area of Northwest China[J]. Transactions of the CSAE, 2010, 26(2):103-107(in Chinese).

    [26] THIROS S A, BEXFIELD L M, ANNING D W, et al. Section 12. Conceptual understanding and groundwater quality of the basin-fill aquifers in the Santa Ana Basin, California[J]. Geological Survey Professional Paper, 2010,1781:219-265.
    [27] DUBROVSKY N M, BUROW K R, CLARK G M, et al. The quality of our Nation's waters-nutrients in the Nations streams and groundwater,1992-2004:U.S.[R]. Geological Survey Circular,2010,1350:51-85.
    [28] 王平,杨亮平,林晓静等.内蒙古河套平原高矿化度咸水分布规律及成因分析[J].人民长江,2018,49(1):44-50.

    WANG P, YANG L P, LIN X J, et al. Distribution characteristics and formation of high mineralized saline groundwater in Hetao plain, Inner Mongolia[J]. Yangtze River,2018,49(1):44-50(in Chinese).

    [29] KENT R, LANDON M K. Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater sub basins, San Bernardino County, California:Influence of legacy land use[J]. Science of the Total Environment,2013,452:125-136.
    [30] 赵江涛,周金龙,高业新,等.新疆焉耆盆地平原区地下水溶解性总固体时空演化[J].农业工程学报,2016,32(5):120-125.

    ZHAO J T, ZHOU J L, GAO X Y, et al. Spatial-temporal evolution of total dissolved solids of groundwater in plain area of Yanqi Basin, Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(5):120-125(in Chinese).

    [31] 王卓微,赵新锋,庞园,等.流溪河流域地下水水化学时空特征及源辨析[J].环境化学,2017,36(12):2701-2710.

    WANG Z W, ZHAO X F, PANG Y, et al. spatial and seasonal geochemical and stable isotopic characteristics of groundwater associated with flow system and source identification in Liuxi River catchment[J]. Environmental Chemistry, 2017,36(12):2701-2710(in Chinese).

    [32] JEANNIN P Y, HESSENAUER M, MALARD A, et al. Impact of global change on karst groundwater mineralization in the Jura Mountains[J]. Science of the Total Environment,2016,541:1208-1221.
  • 加载中
计量
  • 文章访问数:  2670
  • HTML全文浏览数:  2667
  • PDF下载数:  63
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-08-15
  • 刊出日期:  2019-06-15

近10年中国典型农田生态系统水体pH和矿化度变化特征

  • 1.  中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京, 100101;
  • 2.  中国科学院大学资源与环境学院, 北京, 100190
基金项目:

国家重点研发计划(2017YFC0503801)资助.

摘要: 选取中国生态系统研究网络(CERN)12个典型农田生态系统,2004-2006年和2014-2016年降水、地表水、地下水pH和矿化度的监测数据,分析中国典型农田生态系统10年间pH和矿化度的变化特征.结果表明,红壤丘陵区降水、地表水、地下水pH最低.10年间桃源、千烟洲降水pH显著降低,且2014-2016年pH 黄土高原 > 东北平原 > 长江三角洲 > 川中丘陵 > 红壤丘陵区.其中禹城(936-1183 mg·L-1)最高,鹰潭和千烟洲最低(25-87 mg·L-1).10年间桃源和千烟洲地表水矿化度降低138 mg·L-1和62 mg·L-1,其余农田生态系统变化不显著;地下水矿化度禹城(1594-2094 mg·L-1)最高,为Ⅳ类地下水(1000-2000 mg·L-1);封丘、栾城、安塞、常熟、盐亭、沈阳(319-750 mg·L-1)其次,为Ⅲ类(500-1000 mg·L-1)或Ⅱ类(300-500 mg·L-1);其余生态系统达Ⅰ类(-1)地下水标准.10年间禹城地下水矿化度增加500 mg·L-1,沈阳、长武、盐亭、千烟洲、常熟站、桃源降低102-384 mg·L-1.不同空间格局、地质结构差异、化石燃料燃烧、人类活动(耕作、施肥、灌溉)是造成农田生态系统各水体pH和矿化度变化的主要原因.本研究结果为生态系统水体酸碱度、矿化度评估及其长期动态变化提供数据依据.

English Abstract

参考文献 (32)

目录

/

返回文章
返回