不同热处理条件对亚麻酸中持久性自由基产生的影响

赵力, 梁妮, 张绪超, 李炎, 净婷菲, 段文焱. 不同热处理条件对亚麻酸中持久性自由基产生的影响[J]. 环境化学, 2019, 38(6): 1207-1213. doi: 10.7524/j.issn.0254-6108.2018082906
引用本文: 赵力, 梁妮, 张绪超, 李炎, 净婷菲, 段文焱. 不同热处理条件对亚麻酸中持久性自由基产生的影响[J]. 环境化学, 2019, 38(6): 1207-1213. doi: 10.7524/j.issn.0254-6108.2018082906
ZHAO Li, LIANG Ni, ZHANG Xuchao, LI Yan, JING Tingfei, DUAN Wenyan. Effect of different heating treatment conditions on the generation of persistent free radicals in linolenic acid[J]. Environmental Chemistry, 2019, 38(6): 1207-1213. doi: 10.7524/j.issn.0254-6108.2018082906
Citation: ZHAO Li, LIANG Ni, ZHANG Xuchao, LI Yan, JING Tingfei, DUAN Wenyan. Effect of different heating treatment conditions on the generation of persistent free radicals in linolenic acid[J]. Environmental Chemistry, 2019, 38(6): 1207-1213. doi: 10.7524/j.issn.0254-6108.2018082906

不同热处理条件对亚麻酸中持久性自由基产生的影响

  • 基金项目:

    国家自然科学基金(41673098),云南省应用基础研究计划(20137FZ004)和昆明理工大学高层次人才平台建设项目(20170038)资助.

Effect of different heating treatment conditions on the generation of persistent free radicals in linolenic acid

  • Fund Project: Supported by the National Scientific Foundation of China (41673098), Applied Basic Research Program of Yunnan Province (2013FZ004) and Kunming University of Science and Technology High Level Talent Platform Construction Project (20170038).
  • 摘要: 本研究采用电子顺磁共振波谱仪和紫外分光光度计,分别测定不同热处理方式和时间下,亚麻酸中持久性自由基信号和化学结构特征,以期探究亚麻酸结构变化及其自由基形成位点间的关系.结果表明,亚麻酸在电炉加热和微波复热后均能产生自由基,且复热后样品中的自由基信号强度明显增强,并随微波复热时间的增加而增强.这归因于电炉加热对亚麻酸起到启动作用,并提高其分子极性,而后在氧气的引入和微波辐射的作用下,导致其共轭双键断裂,进而产生以氧为中心的自由基(g因子值> 2.0040).微波复热时间增加时,衰减速率常数K随之增加,相应的,半衰期t1/2随之减少.这是由于随着微波复热时间的增加,产生的较短寿命、高自旋的自由基增多.亚麻酸样品的羟基自由基随微波加热时间的增加而增强,这是因为微波加热有利于促进过氧化物的生成及其O-O键的断裂,进而贡献羟基自由基的形成.
  • 加载中
  • [1] 赵力, 陈建, 李浩, 等. 裂解温度和酸处理对生物炭中持久性自由基产生的影响[J]. 环境化学, 2017, 30(11):2472-2478.

    ZHAO L, CHEN J, LI H, et al. Effect of pyrolysis temperature and acid treatment on the generation of free radicals in biochars[J]. Environmental Chemistry, 2017, 30(11):2472-2478(in Chinese).

    [2] VEJERANO E W, RAO G, KHACHATRYAN L, et al. Environmentally persistent free radicals:Insights on a new class of pollutants[J]. Environmental Science & Technology, 2018, 52(5):2468-2481.
    [3] SCHULTZ E S, LITONJUA A A, MELEN E. Effects of long-term exposure to traffic-related air pollution on lung function in children[J]. Current Allergy & Asthma Reports, 2017, 17(6):41-54.
    [4] LEE A, LEON H H H, MATHILDA C Y H, et al. Prenatal fine particulate exposure and early childhood asthma:Effect of maternal stress and fetal gender[J]. Journal of Allergy & Clinical Immunology, 2017, 141(5):1880-1886.
    [5] AI P H L, HUA H, CHUONG P H. Free radicals, antioxidants in disease and health[J]. International Journal of Biomedical Science Ijbs, 2008, 4(2):89-96.
    [6] GUI M M, LEE K T, BHATIA S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock[J]. Energy, 2008, 33(11):1646-1653.
    [7] AOYAMA T, NOSAKA N, KASAI M. Research on the nutritional characteristics of medium-chain fatty acids[J]. J Med Invest, 2007, 54(3-4):385-388.
    [8] DJOUSSEL, ARNETT D K, CARR J J, et al. Dietary linolenic acid is inversely associated with calcified atherosclerotic plaque in the coronary arteries:The national heart, lung, and blood institute family heart study[J]. Circulation, 2005, 111(22):2921-2926.
    [9] JOVANOVSKI E, LI D, THANH HO H V, et al. The effect of alpha-linolenic acid on glycemic control in individuals with type 2 diabetes:A systematic review and meta-analysis of randomized controlled clinical trials[J]. Medicine, 2017, 96(21):6531-6542.
    [10] BURDGE G C, CALDER P C. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults[J]. Reproduction Nutrition Development, 2005, 45(5):581-597.
    [11] RAFFI J, YORDANOV N D, CHABANE S, et al. Identification of irradiation treatment of aromatic herbs, spices and fruits by electron paramagnetic resonance and thermoluminescence[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2000, 56(2):409-416.
    [12] ŁABANOWSKA, M, WESELUCHA-BIRCZYNSKA A, KURDZIEL M, et al. The mechanism of thermal activated radical formation in potato starch studied by electron paramagnetic resonance and Raman spectroscopies[J]. Carbohydrate Polymers, 2013, 91(1):339-347.
    [13] FAN D M, HU B, LIN L F, et al. Rice protein radicals:growth and stability under microwave treatment[J]. Rsc Advances, 2016, 6(100):97825-97831.
    [14] EMMA C, MARIATERIATERESA R E, ELENA V, et al. Microwave heating of different vegetable oils:Relation between chemical and thermal parameters[J]. LWT-Food Science and Technology, 2010, 43(7):1104-1112.
    [15] TASCA J, LAVAT A, NESPRIAS K, et al. Cyclic organic peroxides thermal decomposition in the presence of CuFe2O4, magnetic nanoparticles[J]. Journal of Molecular Catalysis A Chemical, 2012, 363-364(11):166-170.
    [16] HALES B J, CASE E E. Immobilized radicals. IV. Biological semiquinone anions and neutral semiquinones[J]. BBA-Bioenergetics, 1981, 637(2):291-302.
    [17] DI V C, NEYMAN K M, RISSE T, et al. Density-functional model cluster studies of EPR g tensors of Fs+ centers on the surface of MgO[J]. Journal of Chemical Physics, 2006, 124(4):1-7.
    [18] INWATI G K, RAO Y, SINGH S. In situ free radical growth mechanism of platinum nanoparticles by microwave irradiation and electrocatalytic properties[J]. Nanoscale Research Letters, 2016, 11(1):458-466.
    [19] TYAGI V K, VASISHTHA A K. Changes in the characteristics and composition of oils during deep-fat frying[J]. Journal of the American Oil Chemists' Society, 1996, 73(4):499-506.
    [20] 王冬梅, 郭书贤,刘凤霞, 等. 共轭双键对脂肪酸紫外吸收的影响[J]. 安徽农业科学, 2007, 35(20):5999-6000.

    WANG D M, GUO S X, LIU F X, et al. Influence of conjugated double bond on ultraviolet absorption of fatty acid[J]. Anhui Agricultural Sciences, 2007,35(20):5999-6000(in Chinese).

    [21] WAKAKO T, AKIKO M, KAORI U. Formation of trans fatty acids in edible oils during the frying and heating process[J]. Food Chemistry, 2010, 123(4):976-982.
    [22] THOSTENSON E T, CHOU T W. Microwave processing:fundamentals and applications[J]. Composites Part A Applied Science & Manufacturing, 1999, 30(9):1055-1071.
    [23] MASKOS Z, LAVRENT K A, DELLINGER B. Precursors of Radicals in tobacco smoke and the role of particulate matter in forming and stabilizing radicals[J]. Energy Fuels, 2005, 19(6):2466-2473.
    [24] KUMAR S. Free radicals and antioxidants:human and food system[J]. Advances in Applied Science Research, 2011, 2(1):129-135.
    [25] FENN J A P, KNIGHT J A. The value of graduate education in clinical laboratory science[J]. Laboratory Medicine, 1995, 26(8):537-541.
    [26] LI Y, ZHAO J, SHANG E, et al. Effects of chloride ions on dissolution, ROS generation, and toxicity of silver nanoparticles under UV irradiation[J]. Environmental Science & Technology, 2018, 52(8):4842-4849.
    [27] BARRETO G P, ALVAREZ E E, EYLER G N, et al. Thermal decomposition of diethylketone cyclic triperoxide in polar solvents[J]. Australian Journal of Chemistry, 2014, 67(6):881-886.
    [28] NESPRIAS R, EYLER G. Mono, di and trifunctional cyclic organic peroxides:the effect of substituents and ring size on their thermolysis in 1,4-dioxan[J]. Australian Journal of Chemistry, 2013, 66(9):1080-1087.
  • 加载中
计量
  • 文章访问数:  3085
  • HTML全文浏览数:  3080
  • PDF下载数:  70
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-08-29
  • 刊出日期:  2019-06-15

不同热处理条件对亚麻酸中持久性自由基产生的影响

  • 1. 昆明理工大学, 云南省土壤固碳与污染控制重点实验室, 昆明, 650500
基金项目:

国家自然科学基金(41673098),云南省应用基础研究计划(20137FZ004)和昆明理工大学高层次人才平台建设项目(20170038)资助.

摘要: 本研究采用电子顺磁共振波谱仪和紫外分光光度计,分别测定不同热处理方式和时间下,亚麻酸中持久性自由基信号和化学结构特征,以期探究亚麻酸结构变化及其自由基形成位点间的关系.结果表明,亚麻酸在电炉加热和微波复热后均能产生自由基,且复热后样品中的自由基信号强度明显增强,并随微波复热时间的增加而增强.这归因于电炉加热对亚麻酸起到启动作用,并提高其分子极性,而后在氧气的引入和微波辐射的作用下,导致其共轭双键断裂,进而产生以氧为中心的自由基(g因子值> 2.0040).微波复热时间增加时,衰减速率常数K随之增加,相应的,半衰期t1/2随之减少.这是由于随着微波复热时间的增加,产生的较短寿命、高自旋的自由基增多.亚麻酸样品的羟基自由基随微波加热时间的增加而增强,这是因为微波加热有利于促进过氧化物的生成及其O-O键的断裂,进而贡献羟基自由基的形成.

English Abstract

参考文献 (28)

目录

/

返回文章
返回