稀土金属-铝复合金属氧化物对As(Ⅴ)的吸附

杨柳, 韩彩芸, 刘德坤, 阳婷, 唐杰. 稀土金属-铝复合金属氧化物对As(Ⅴ)的吸附[J]. 环境化学, 2019, 38(6): 1291-1297. doi: 10.7524/j.issn.0254-6108.2018082402
引用本文: 杨柳, 韩彩芸, 刘德坤, 阳婷, 唐杰. 稀土金属-铝复合金属氧化物对As(Ⅴ)的吸附[J]. 环境化学, 2019, 38(6): 1291-1297. doi: 10.7524/j.issn.0254-6108.2018082402
YANG Liu, HAN Caiyun, LIU Dekun, YANG Ting, TANG Jie. As(Ⅴ) adsorption by the composite oxide of rare earth-aluminum[J]. Environmental Chemistry, 2019, 38(6): 1291-1297. doi: 10.7524/j.issn.0254-6108.2018082402
Citation: YANG Liu, HAN Caiyun, LIU Dekun, YANG Ting, TANG Jie. As(Ⅴ) adsorption by the composite oxide of rare earth-aluminum[J]. Environmental Chemistry, 2019, 38(6): 1291-1297. doi: 10.7524/j.issn.0254-6108.2018082402

稀土金属-铝复合金属氧化物对As(Ⅴ)的吸附

  • 基金项目:

    国家自然科学基金(21767016)资助.

As(Ⅴ) adsorption by the composite oxide of rare earth-aluminum

  • Fund Project: Supported by the National Natural Science Foundation of China(21767016).
  • 摘要: 本文以介孔氧化铝为载体、稀土金属的硝酸盐为原料制备了稀土金属-铝复合金属氧化物,通过N2吸脱附等温线对所得稀土金属-铝复合金属氧化物的结构进行表征分析,采用静态吸附实验对所得复合金属氧化物对As(Ⅴ)的吸附性能进行了研究,并就最优吸附剂对As(Ⅴ)的等温吸附和吸附动力学进行了考察.结果表明,嫁接稀土金属之后所得复合金属氧化物仍然保有原来的介孔结构;Y-Al复合氧化物对As(Ⅴ)的吸附性能优于Eu-Al、Pr-Al和Sm-Al复合金属氧化物;最佳Y/MA质量比为1:10;实验数据经吸附等温式分析发现,Y-Al复合氧化物对As(Ⅴ)的最大吸附容量为62.2 mg·g-1;根据吸附动力学方程分析发现,Y-Al复合氧化物对As(Ⅴ)的吸附行为遵从准二级动力学方程,因此吸附过程中"表面反应"是主要速率控制步骤.
  • 加载中
  • [1] ZHANG T, SUN D D. Removal of arsenic from water using multifunctional micro-/nano-structured MnO2, spheres and microfiltration[J]. Chemical Engineering Journal, 2013, 225(3):271-279.
    [2] WU K, LIU R, LI T, et al. Removal of arsenic(Ⅲ) from aqueous solution using a low-cost by-product in Fe-removal plants-Fe-based backwashing sludge[J]. Chemical Engineering Journal, 2013, 226(1):393-401.
    [3] HOKKANEN S, REPO E, SONG L, et al. Removal of arsenic(Ⅴ) by magnetic nanoparticle activated microfibrillated cellulose[J]. Chemical Engineering Journal, 2015, 260(1385-8947):886-894.
    [4] ZHANG M, GAO B. Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite[J]. Chemical Engineering Journal, 2013, 226(24):286-292.
    [5] GLOCHEUX Y, PASARIN M M, ALBADARIN A B, et al. Removal of arsenic from groundwater by adsorption onto an acidified laterite by-product[J]. Chemical Engineering Journal, 2013, 228(28):565-574.
    [6] LEE J Y, MOON S H, YUN S T. Contamination of groundwater by arsenic and other constituents in an industrial complex[J]. Environmental Earth Sciences, 2010, 60(1):65-79.
    [7] RANGO T, VENGOSH A, DWYER G, et al. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers[J]. Water Research, 2013, 47(15):5801-5818.
    [8] BACQUART T, FRISBIE S, MITCHELL E, et al. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar:Arsenic, manganese, fluoride, iron, and uranium[J]. Science of the Total Environment, 2015, 517:232-245.
    [9] SALIM M, MUNEKAGE Y. Removal of arsenic from aqueous solution using silica ceramic:Adsorption kinetics and equilibrium studies[J]. International Journal of Environmental Research, 2010, 3(1):13-22.
    [10] 欧阳通. 稀土材料氢氧化铈吸附水中亚砷酸与砷酸阴离子的特性效果[C].全国环境模拟与污染控制学术研会, 2003. OUYANG T. Effect of cerium hydroxide on the adsorption of arsenic acid and arsenic acid anion in water[C]. National Institute of Environmental Simulation and Pollution Control, 2003(in Chinese).
    [11] HAN C Y, CHEN H, ZHANG L, et al. Preparation and As(Ⅴ) adsorption performance of mesoporous alumina[J]. Journal of Functional Materials, 2016, 65:204-211.
    [12] MAJUMDER C. Arsenic(Ⅴ) Removal using activated alumina:Kinetics and modeling by response surface[J]. Journal of Environmental Engineering, 2018, 144(3):0417115.
    [13] 韩彩芸, 杨柳, 刘航,等. 铝源对介孔氧化铝结构和除As(Ⅴ)性能的影响[J]. 功能材料, 2017, 48(7):7115-7119.

    HAN C Y, YANG L, LIU H, et al. The effect of aluminium source on the structure of mesoporous alumina and the performance of As (Ⅴ) removal[J]. Journal of Functional Materials, 2017, 48(7):7115-7119(in Chinese).

    [14] YUAN Q, YIN A X, LUO C, et al. Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability[J]. Journal of the American Chemical Society, 2008, 130(11):3465-3472.
    [15] 邵艳秋, 赵婷婷, 付文婷, 等. 氨基改性SBA-15介孔材料的制备及对Pb(Ⅱ)的吸附性能研究[J]. 硅酸盐通报, 2016, 35(2):587-592.

    SHAO Y Q, ZHAO T T, FU W T, et al. The preparation of mesoporous materials amino modified SBA-15 and the research on adsorption properties of Pb (Ⅱ)[J]. Journal of Silicate Bulletin, 2016, 35(2):587-592(in Chinese).

    [16] ZHANG S X, NIU H Y, CAI Y, et al. Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials:MnFe2O4 and CoFe2O4[J]. Chemical Engineering Journal, 2010, 158(3):599-607.
    [17] 丁爱中, 付云飞, 刘培生, 等. 载铝多孔沸石的制备及其对水中砷的吸附研究[J]. 中国科技论文, 2011, 6(9):700-706.

    DING A Z, FU Y F, LIU P S,et al. Preparation of aluminum-loaded porous zeolite and its adsorption of arsenic in water[J]. Chinese Journal of Science and Technology, 2011, 6(9):700-706(in Chinese).

    [18] JANG M, SHIN E W, PARK J K, et al. Mechanisms of arsenate adsorption by highly-ordered nano-structured silicate media impregnated with metal oxides[J]. Environmental Science & Technology, 2003, 37(21):5062-5070.
    [19] HAN C, LIU H, PU H, et al. Synthesis and characterization of mesoporous alumina and their performances for removing arsenic(Ⅴ)[J]. Chemical Engineering Journal, 2013, 217(2):1-9.
  • 加载中
计量
  • 文章访问数:  1917
  • HTML全文浏览数:  1915
  • PDF下载数:  42
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-08-24
  • 刊出日期:  2019-06-15

稀土金属-铝复合金属氧化物对As(Ⅴ)的吸附

  • 1. 昆明理工大学环境科学与工程学院, 昆明, 650500
基金项目:

国家自然科学基金(21767016)资助.

摘要: 本文以介孔氧化铝为载体、稀土金属的硝酸盐为原料制备了稀土金属-铝复合金属氧化物,通过N2吸脱附等温线对所得稀土金属-铝复合金属氧化物的结构进行表征分析,采用静态吸附实验对所得复合金属氧化物对As(Ⅴ)的吸附性能进行了研究,并就最优吸附剂对As(Ⅴ)的等温吸附和吸附动力学进行了考察.结果表明,嫁接稀土金属之后所得复合金属氧化物仍然保有原来的介孔结构;Y-Al复合氧化物对As(Ⅴ)的吸附性能优于Eu-Al、Pr-Al和Sm-Al复合金属氧化物;最佳Y/MA质量比为1:10;实验数据经吸附等温式分析发现,Y-Al复合氧化物对As(Ⅴ)的最大吸附容量为62.2 mg·g-1;根据吸附动力学方程分析发现,Y-Al复合氧化物对As(Ⅴ)的吸附行为遵从准二级动力学方程,因此吸附过程中"表面反应"是主要速率控制步骤.

English Abstract

参考文献 (19)

目录

/

返回文章
返回