稀土金属-铝复合金属氧化物对As(Ⅴ)的吸附
As(Ⅴ) adsorption by the composite oxide of rare earth-aluminum
-
摘要: 本文以介孔氧化铝为载体、稀土金属的硝酸盐为原料制备了稀土金属-铝复合金属氧化物,通过N2吸脱附等温线对所得稀土金属-铝复合金属氧化物的结构进行表征分析,采用静态吸附实验对所得复合金属氧化物对As(Ⅴ)的吸附性能进行了研究,并就最优吸附剂对As(Ⅴ)的等温吸附和吸附动力学进行了考察.结果表明,嫁接稀土金属之后所得复合金属氧化物仍然保有原来的介孔结构;Y-Al复合氧化物对As(Ⅴ)的吸附性能优于Eu-Al、Pr-Al和Sm-Al复合金属氧化物;最佳Y/MA质量比为1:10;实验数据经吸附等温式分析发现,Y-Al复合氧化物对As(Ⅴ)的最大吸附容量为62.2 mg·g-1;根据吸附动力学方程分析发现,Y-Al复合氧化物对As(Ⅴ)的吸附行为遵从准二级动力学方程,因此吸附过程中"表面反应"是主要速率控制步骤.Abstract: In this study, rare earth-aluminum composite was synthesized by employing mesoporous alumina and rare earth nitrate as the carrier and rare earth source, respectively. The obtained material was characterized by N2 adsorption-desorption isotherm, and the performance of As(Ⅴ) adsorption over was composite materials were investigated by batch experiments, including adsorption isotherms and kinetics. It was found that the mesoporous structure of alumina was kept well after incorporating rare earth. And As(Ⅴ) adsorption performance of Y-Al composite was better than that of Eu-Al composite, Pr-Al composite and Sm-Al composite. The optimal mass ratio of Y/MA is 1:10. Additionally, the adsorption data of Y-Al composite were fitted well by Langmuir model, and the maximum As(Ⅴ) adsorption capacity was 62.2 mg·g-1. The adsorption kinetics were obeyed by pseudo-second-order model, which indicated that "surface reaction" was the limiting step.
-
Key words:
- rare earth /
- composite metal oxide /
- adsorption /
- surface structure
-
[1] ZHANG T, SUN D D. Removal of arsenic from water using multifunctional micro-/nano-structured MnO2, spheres and microfiltration[J]. Chemical Engineering Journal, 2013, 225(3):271-279. [2] WU K, LIU R, LI T, et al. Removal of arsenic(Ⅲ) from aqueous solution using a low-cost by-product in Fe-removal plants-Fe-based backwashing sludge[J]. Chemical Engineering Journal, 2013, 226(1):393-401. [3] HOKKANEN S, REPO E, SONG L, et al. Removal of arsenic(Ⅴ) by magnetic nanoparticle activated microfibrillated cellulose[J]. Chemical Engineering Journal, 2015, 260(1385-8947):886-894. [4] ZHANG M, GAO B. Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite[J]. Chemical Engineering Journal, 2013, 226(24):286-292. [5] GLOCHEUX Y, PASARIN M M, ALBADARIN A B, et al. Removal of arsenic from groundwater by adsorption onto an acidified laterite by-product[J]. Chemical Engineering Journal, 2013, 228(28):565-574. [6] LEE J Y, MOON S H, YUN S T. Contamination of groundwater by arsenic and other constituents in an industrial complex[J]. Environmental Earth Sciences, 2010, 60(1):65-79. [7] RANGO T, VENGOSH A, DWYER G, et al. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers[J]. Water Research, 2013, 47(15):5801-5818. [8] BACQUART T, FRISBIE S, MITCHELL E, et al. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar:Arsenic, manganese, fluoride, iron, and uranium[J]. Science of the Total Environment, 2015, 517:232-245. [9] SALIM M, MUNEKAGE Y. Removal of arsenic from aqueous solution using silica ceramic:Adsorption kinetics and equilibrium studies[J]. International Journal of Environmental Research, 2010, 3(1):13-22. [10] 欧阳通. 稀土材料氢氧化铈吸附水中亚砷酸与砷酸阴离子的特性效果[C].全国环境模拟与污染控制学术研会, 2003. OUYANG T. Effect of cerium hydroxide on the adsorption of arsenic acid and arsenic acid anion in water[C]. National Institute of Environmental Simulation and Pollution Control, 2003(in Chinese). [11] HAN C Y, CHEN H, ZHANG L, et al. Preparation and As(Ⅴ) adsorption performance of mesoporous alumina[J]. Journal of Functional Materials, 2016, 65:204-211. [12] MAJUMDER C. Arsenic(Ⅴ) Removal using activated alumina:Kinetics and modeling by response surface[J]. Journal of Environmental Engineering, 2018, 144(3):0417115. [13] 韩彩芸, 杨柳, 刘航,等. 铝源对介孔氧化铝结构和除As(Ⅴ)性能的影响[J]. 功能材料, 2017, 48(7):7115-7119. HAN C Y, YANG L, LIU H, et al. The effect of aluminium source on the structure of mesoporous alumina and the performance of As (Ⅴ) removal[J]. Journal of Functional Materials, 2017, 48(7):7115-7119(in Chinese).
[14] YUAN Q, YIN A X, LUO C, et al. Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability[J]. Journal of the American Chemical Society, 2008, 130(11):3465-3472. [15] 邵艳秋, 赵婷婷, 付文婷, 等. 氨基改性SBA-15介孔材料的制备及对Pb(Ⅱ)的吸附性能研究[J]. 硅酸盐通报, 2016, 35(2):587-592. SHAO Y Q, ZHAO T T, FU W T, et al. The preparation of mesoporous materials amino modified SBA-15 and the research on adsorption properties of Pb (Ⅱ)[J]. Journal of Silicate Bulletin, 2016, 35(2):587-592(in Chinese).
[16] ZHANG S X, NIU H Y, CAI Y, et al. Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials:MnFe2O4 and CoFe2O4[J]. Chemical Engineering Journal, 2010, 158(3):599-607. [17] 丁爱中, 付云飞, 刘培生, 等. 载铝多孔沸石的制备及其对水中砷的吸附研究[J]. 中国科技论文, 2011, 6(9):700-706. DING A Z, FU Y F, LIU P S,et al. Preparation of aluminum-loaded porous zeolite and its adsorption of arsenic in water[J]. Chinese Journal of Science and Technology, 2011, 6(9):700-706(in Chinese).
[18] JANG M, SHIN E W, PARK J K, et al. Mechanisms of arsenate adsorption by highly-ordered nano-structured silicate media impregnated with metal oxides[J]. Environmental Science & Technology, 2003, 37(21):5062-5070. [19] HAN C, LIU H, PU H, et al. Synthesis and characterization of mesoporous alumina and their performances for removing arsenic(Ⅴ)[J]. Chemical Engineering Journal, 2013, 217(2):1-9.
计量
- 文章访问数: 1917
- HTML全文浏览数: 1915
- PDF下载数: 42
- 施引文献: 0