根瘤菌S2对离子态和酒石酸络合态铜的吸附行为
Biosorption behavior of Rhizobium sp. S2 on ionic and tartaric acid chelated copper
-
摘要: 探究根瘤菌S2的吸附动力学和热力学行为以及根据不同投菌量和pH的影响分析其对于Cu2+及酒石酸络合铜的吸附性能;结合对吸附前后上清液及菌体进行EEM、FTIR、XRD以及XPS分析解释菌株吸附机理.结果表明,菌株吸附2 mg·L-1 Cu2+及酒石酸络合铜均可分为快速吸附和慢速平衡阶段,12 h后基本达到平衡,吸附率达97%以上;温度的升高会导致吸附量增加.最适投菌量约为0.6 g·L-1 wet cells;菌株吸附Cu2+的最适pH值为6,而当pH值小于10时菌株对于酒石酸络合铜的吸附几乎不受影响.在吸附过程中,溶解性微生物产物(SMP)、细胞壁上的还原和官能团络合机制均发挥关键作用,吸附铜离子过程中SMP的作用更明显,而细胞壁在络合铜的吸附过程中的作用较大,其破络效率决定于细菌活性.Abstract: The biosorption kinetics, thermodynamic behaviors, and influence factors (microbial dosages and pH) experiments were conducted to investigate the biosorption capacity of ionic and tartaric acid chelated copper with Rhizobium sp. strain S2. EEM, FTIR, XRD and XPS were employed to characterized the solution and strain before and after biosorption. The results showed that the biosorption process of 2 mg·L-1 ionic and chelated copper involved rapid and slow biosorption stages and reached equilibrium after 12 h with the biosorption efficiency up to 97%. Higher temperature led to higher adsorption, and the optimum microbial dosage was approximately 0.6 g wet cells·L-1. The optimum pH of biosorption of ionic copper was 6, and the biosorption capacity of tartaric acid chelated copper was independent of pH below 10. The effects of SMP, reduction and complexation of cell wall were pivotal, the role of SMP was more significant in biosorption for ionic copper while cell wall played a greater role in biosorption for chelated copper.
-
[1] JÄRUP L. Hazards of heavy metal contamination[J]. British Medical Bulletin, 2003, 6890(1):167-182. [2] SURANJANA A R, MANAS K R. Bioremediation of heavy metal toxicity with special reference to chromium[J]. Al Ameen Journal of Medical Sciences, 2009, 2(2):57-63. [3] 赵庆龄, 张乃弟, 路文如. 土壤重金属污染研究回顾与展望Ⅱ——基于三大学科的研究热点与前沿分析[J]. 环境科学与技术, 2010, 33(7):102-106. ZHAO Q L, ZHANG N D, LU W R. Research review and prospect on soil heavy metals pollution Ⅱ-Research focus and analysis based on three major disciplines[J]. Environmental Science & Technology, 2010, 33(7):102-106(in Chinese).
[4] 贾鹏, 俞马宏. 柠檬酸盐络合铜在污泥上的吸附[J]. 环境工程学报, 2013, 7(7):2733-2737. JIA P, YU M H. Adsorption of Cu (Ⅱ) onto sludge in the presence of citrate[J]. Chinese Journal of Environmental Engineering, 2013, 7(7):2733-2737(in Chinese).
[5] 国家环境保护总局. 水和废水监测分析方法.第4版[M]. 北京:中国环境科学出版社, 2002. State Environmental Protection Administration. Analysis methods of water and wastewater monitoring[M]. Beijing:China Environmental Science Press, 2002(in Chinese). [6] HAWARI A H, MULLIGAN C N. Biosorption of lead (Ⅱ), cadmium (Ⅱ), copper (Ⅱ) and nickel (Ⅱ) by anaerobic granular biomass[J]. Bioresource Technology, 2006, 97(4):692-700. [7] 饶清华, 林秀珠, 邱宇, 等. 活性污泥对Pb2+的生物吸附特征研究[J]. 工业用水与废水, 2009, 40(6):53-56. RAO Q H, LIN X Z, QIU Y, et al. Character of Pb2+ biosorption by activated sludge[J]. Industrial Water & Wastewater, 2009, 40(6):53-56(in Chinese).
[8] 吴海锁, 张鸿, 张爱茜, 等. 活性污泥对重金属离子混合物的生物吸附[J]. 环境化学, 2002, 21(6):528-532. WU H S, ZHANG H, ZHANG A Q, et al. Biosorption of heavy metal mixture by activated sludge[J]. Environmental Chemistry, 2002, 21(6):528-532(in Chinese).
[9] 史广宇, 程媛媛, 史琦, 等. 铜绿假单胞菌对铜和铅的吸附[J]. 环境科学学报, 2017, 37(6):2107-2113. SHI G Y, CHENG Y Y, SHI Q, et al. Study of the biosorption of copper and lead by Pseudomonas aeruginosa[J]. Acta Scientiae Circumstantiae, 2017, 37(6):2107-2113(in Chinese).
[10] 周东琴, 魏德洲. 沟戈登氏菌对重金属的生物吸附-浮选和解吸性能[J]. 环境科学, 2006, 27(5):960-964. ZHOU D Q, WEI D Z. Biosorptive-flotation and desorption operation of heavy metals from wastewater effluents by gordona amarae[J]. Environmental Science, 2006, 27(5):960-964(in Chinese).
[11] 贾成光. 一株耐镍菌的分离鉴定及其除镍特性与机理研究[D]. 厦门:集美大学, 2014. JIA C G. Isolation and identification of a nickel-resistant strain and its characterization and mechanism of nickel removal[D]. Xiamen:JiMei University, 2014(in Chinese). [12] ALDRICH C, FENG D. Removal of heavy metals from wastewater effluents by biosorptive flotation[J]. Minerals Engineering, 2000, 13(10-11):1129-1138. [13] BARKER D, STUCKEY D. A review of soluble microbial products (SMP) in wastewater treatment systems[J]. Water Research, 1999, 33(14):3063-3082. [14] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environment Science & Technology, 2003, 37:5701-5710. [15] WANG Z, ZHANG T. Characterization of soluble microbial products (SMP) under stressful conditions[J]. Water Research, 2010, 44:5499-5509. [16] PAN X H, CHEN Z, CHEN Y J, et al. The analysis of the immobilization mechanism of Ni(Ⅱ)on Bacillus cereus[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(4):3597-3603. [17] BAHARI Z M, ALTOWAYTI W, IBRAHIM Z, et al. Biosorption of As(Ⅲ)by non-living biomass of an arsenic-hypertolerant Bacillus cereus strain SZ2 isolated from a gold mining environment:Equilibrium and kinetic study[J]. Applied Biochemistry and Biotechnology, 2013, 8:2247-2261. [18] JOO J, HASSAN S H A, OH S. Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus[J]. International Biodeterioration and Biodegradation, 2010, 64(8):734-741. [19] BAI J, YANG X H, DU R Y, et al. Biosorption mechanisms involved in immobilization of soil Pb by Bacillus subtilis DBM in a multi-metalcontaminated soil[J]. Journal of Eevironmental Sciences, 2014, 10:2056-2064. [20] YAO M, LIN J, ZHANG C, et al. Cd(Ⅱ) and As(Ⅲ) bioaccumulation by recombinant Escherichia coli expressing oligomeric human metallothioneins[J]. Journal of Hazardous Materials, 2011, 185(2-3):1605-1608. [21] SUN H K, JEONG J C, AHN Y O, et al. Differential responses of three sweetpotato metallothionein genes to abiotic stress and heavy metals[J]. Molecular Biology Reports, 2014, 41(10):6957-6966. [22] HANSEN B H, RMMA S, GARMO Ø A, et al. Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta ) from three rivers with different heavy metal levels[J]. Comparative Biochemistry & Physiology Part C, 2006, 143(3):263-274. [23] ATIF F, KAUR M, YOUSUF S, et al. In vitro free radical scavenging activity of hepatic metallothionein induced in an Indian freshwater fish, Channa punctata Bloch[J]. Chemico-Biological Interactions, 2006, 162(2):172-180. [24] WANG C, ZHANG F, CAO W, et al. The identification of metallothionein in rare minnow (Gobiocypris rarus) and its expression following heavy metal exposure[J]. Environmental Toxicology & Pharmacology, 2014, 37(3):1283-1291. [25] LAVRADAS R T, HAUSERDAVIS R A, LAVABDIER R C, et al. Metal, metallothionein and glutathione levels in blue crab (Callinectes sp.) specimens from southeastern Brazil[J]. Ecotoxicology & Environmental Safety, 2014, 107(9):55-60. [26] GUPTA V K, RASTOGI A. Biosorption of lead from aqueous solutions by green algae Spirogyra species:Kinetics and equilibrium studies[J]. Journal of Hazardous Materials, 2008, 152:407-414. [27] VALENZUELA C, CAMPOS V, YANEZ J, et al. Isolation of arseniteoxidizing bacteria from arsenic-enriched sediments from Camarones River, Northern Chile[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82(5):593-596.
计量
- 文章访问数: 1957
- HTML全文浏览数: 1956
- PDF下载数: 27
- 施引文献: 0