天然有机物对水中氧化石墨烯凝聚的影响

方华, 章婷婷, 于江华, 赵怡. 天然有机物对水中氧化石墨烯凝聚的影响[J]. 环境化学, 2019, 38(6): 1251-1257. doi: 10.7524/j.issn.0254-6108.2018082902
引用本文: 方华, 章婷婷, 于江华, 赵怡. 天然有机物对水中氧化石墨烯凝聚的影响[J]. 环境化学, 2019, 38(6): 1251-1257. doi: 10.7524/j.issn.0254-6108.2018082902
FANG Hua, ZHANG Tingting, YU Jianghua, ZHAO Yi. Effect of natural organic matters on aggregation of graphene oxide in aqueous systems[J]. Environmental Chemistry, 2019, 38(6): 1251-1257. doi: 10.7524/j.issn.0254-6108.2018082902
Citation: FANG Hua, ZHANG Tingting, YU Jianghua, ZHAO Yi. Effect of natural organic matters on aggregation of graphene oxide in aqueous systems[J]. Environmental Chemistry, 2019, 38(6): 1251-1257. doi: 10.7524/j.issn.0254-6108.2018082902

天然有机物对水中氧化石墨烯凝聚的影响

  • 基金项目:

    国家自然科学基金(41401546)资助.

Effect of natural organic matters on aggregation of graphene oxide in aqueous systems

  • Fund Project: Supported by the National Natural Science Foundation of China (41401546).
  • 摘要: 在比较不同片径氧化石墨烯(graphene oxide,GO)稳定性的基础上,研究了3种典型天然有机物对水中GO凝聚的影响.结果表明,不同片径的GO在水中均呈现较强的电负性,小片径GO可更为稳定的分散.电解质加入可降低GO表面电位,诱发纳米颗粒间碰撞凝聚.水中GO的凝聚过程符合胶体稳定性(DLVO)理论,可分为扩散控制凝聚和反应控制凝聚两个不同阶段.Ca2+可通过吸附电中和机制进一步降低GO表面电位,具有更强的促凝聚作用.天然有机物的存在可抑制GO的凝聚;与海藻酸钠相比,富里酸和腐殖酸易被GO吸附,抑制凝聚的能力更强.Ca2+与腐殖酸间可发生配位桥连作用,形成尺寸较大的产物,强化GO凝聚的快速进行.不同天然有机物与GO和电解质间存在着复杂的相互作用关系,对水中GO凝聚的影响存在着较大的差异.
  • 加载中
  • [1] 任文杰, 滕应. 石墨烯的环境行为及其对环境中污染物迁移归趋的影响[J]. 应用生态学报, 2014, 25(9):2723-2732.

    REN W J, TENG Y. Environmental behavior of graphene and its effect on the transport and fate of pollutants in environment[J].Chinese Journal of Applied Ecology, 2014, 25(9):2723-2732(in Chinese).

    [2] LEE D W, SEO J W, FELIX L L, et al. The structure of graphite oxide:Investigation of its surface chemical groups[J]. Journal of Physical Chemistry B, 2010, 114(17):5723-5728.
    [3] SCHIRINZI G F, PÉREZ-P I, SANCHÍS J, et al. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells[J]. Environmental Research, 2017, 159:579-587.
    [4] SINGH S K, SINGH M K, NAYAK M K, et al. Thrombus inducing property of atomically thin graphene oxide sheets[J]. ACS Nano, 2011, 5(6):4987-4996.
    [5] MU L, GAO Y, HU X. Characterization of biological secretions binding to graphene oxide in water and the specific toxicological mechanisms.[J]. Environmental Science & Technology, 2016, 50(16):8530-8537.
    [6] ARVIDSSON R, MOLANDER S, SANDEN B A, et al. Review of potential environmental and health risks of the nanomaterial graphene[J]. Human and Ecological Risk Assessment, 2013, 19(4):873-887.
    [7] GUPTA K, KHATRI O P. REDUCED graphene oxide as an effective adsorbent for removal of malachite green dye:Plausible adsorption pathways[J]. J Colloid Interface Sci, 2017, 501:11-21.
    [8] CHOWDHURY I, DUCH M C, MANSUKHANI N D, et al. Deposition and release of grapheme oxide nanomaterials using a quartz crystal microbalance[J]. Environmental Science & Technology, 2014, 48(2):961-969.
    [9] TAN P, SUN J, HU Y, et al. Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes[J]. Journal of Hazardous Materials, 2015, 297:251-260.
    [10] XU L, DUAN L, CHEN W. Carbon nanomaterials:Their environmental behavior and effects on the transport and fate of pollutants in environment[J]. Chinese Journal of Applied Ecology, 2009, 20(1):205-212.
    [11] WANG H, ZHAO X, HAN X, et al. Effects of monovalent and divalent metal cations on the aggregation and suspension of Fe3O4 magnetic nanoparticles in aqueous solution[J]. Science of the Total Environment, 2017, 586:817-826.
    [12] PALMIERI V, BUGLI F, LAURIOLA M C, et al. Bacteria meet graphene:Modulation of graphene oxide nanosheet interaction with human pathogens for effective antimicrobial therapy[J]. ACS Biomaterials Science & Engineering, 2017, 3(4):619-627.
    [13] CHEN K L, ELIMELECH M. Aggregation and deposition kinetics of fullerene (C60) nanoparticles[J]. Langmuir, 2006, 22(26):10994-11001.
    [14] WU L, LIU L, GAO B, et al. Aggregation kinetics of graphene oxides in aqueous solutions:Experiments, mechanisms, and modeling[J]. Langmuir, 2013, 29(49):15174-15181.
    [15] TANG H, ZHAO Y, YANG X, et al. New insight into the aggregation of graphene oxide using molecular dynamics simulations and extended Derjaguin-Landau-Verwey-Overbeek Theory[J]. Environmental Science & Technology, 2017, 51(17):9674-9682.
    [16] DEGUCHI S, ALARGOVA A R, TSUJⅡ K, et al. Stable dispersions of fullerenes, C60 and C70, in water. Preparation and characterization[J]. Langmuir, 2001, 17(19):6013-6017.
    [17] FERIANCIKOVA L, XU S. Deposition and remobilization of graphene oxide within saturated sand packs[J]. Journal of Hazardous Materials, 2012, 235-236(2):194-200.
    [18] 方华, 沈冰冰, 荆洁,等. 水中C60纳米颗粒的稳定性研究[J]. 环境科学, 2014, 35(4):1337-1342.

    FANG H, SHENG B B, JING J, et al. Stability of C60 nanoparticles in aquatic systems[J]. Environmental Science, 2014, 35(4):1337-1342(in Chinese).

    [19] 方华, 孙宇心, 荆洁,等. 水中多壁碳纳米管的凝聚动力学[J]. 环境化学, 2015, 34(2):347-351.

    FANG H, SUN Y X, JING J, et al. Aggregation kinetics of multi-walled carbon nanotubes in aquatics system[J]. Environmental Chemistry, 2015, 34(2):347-351(in Chinese).

    [20] XIE B, XU Z, GUO W, et al. Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles[J]. Environmental Science & Technology, 2008, 42(8):2853-2859.
    [21] ALAMOUDI A S. Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes:A review[J]. Desalination, 2010, 259(1):1-10.
    [22] KÖRDEL W, MANOS D, LINTELMANN J, et al. The importance of natural organic material for environmental processes in waters and soils (Technical Report)[J]. Pure & Applied Chemistry, 1997, 69(7):1571-1600.
    [23] BORBA P A A, PINOTTI M, CAMPOS C E M D, et al. Sodium alginate as a potential carrier in solid dispersion formulations to enhance dissolution rate and apparent water solubility of BCS Ⅱ drugs[J]. Carbohydrate Polymers, 2016, 137:350-359.
    [24] WANG X, SHU L, WANG Y, et al. Sorption of peat humic acids to multi-walled carbon nanotubes[J]. Environmental Science & Technology, 2011, 45(21):9276-9283.
    [25] TAN X, FANG M, LI J, et al. Adsorption of Eu(Ⅲ) onto TiO2:Effect of pH, concentration, ionic strength and soil fulvic acid[J]. Journal of Hazardous Materials, 2009, 168(1):458-465.
    [26] CHEN K L, ELIMELECH M. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions[J]. Journal of Colloid and Interface Science, 2007, 309(1):126-134.
  • 加载中
计量
  • 文章访问数:  3388
  • HTML全文浏览数:  3388
  • PDF下载数:  46
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-08-29
  • 刊出日期:  2019-06-15

天然有机物对水中氧化石墨烯凝聚的影响

  • 1.  南京信息工程大学环境科学与工程学院, 大气环境与装备技术协同创新中心, 南京, 210044;
  • 2.  江苏省大气环境监测与污染控制高技术研究重点实验室, 南京, 210044
基金项目:

国家自然科学基金(41401546)资助.

摘要: 在比较不同片径氧化石墨烯(graphene oxide,GO)稳定性的基础上,研究了3种典型天然有机物对水中GO凝聚的影响.结果表明,不同片径的GO在水中均呈现较强的电负性,小片径GO可更为稳定的分散.电解质加入可降低GO表面电位,诱发纳米颗粒间碰撞凝聚.水中GO的凝聚过程符合胶体稳定性(DLVO)理论,可分为扩散控制凝聚和反应控制凝聚两个不同阶段.Ca2+可通过吸附电中和机制进一步降低GO表面电位,具有更强的促凝聚作用.天然有机物的存在可抑制GO的凝聚;与海藻酸钠相比,富里酸和腐殖酸易被GO吸附,抑制凝聚的能力更强.Ca2+与腐殖酸间可发生配位桥连作用,形成尺寸较大的产物,强化GO凝聚的快速进行.不同天然有机物与GO和电解质间存在着复杂的相互作用关系,对水中GO凝聚的影响存在着较大的差异.

English Abstract

参考文献 (26)

目录

/

返回文章
返回