市售面粉及面制品中镉的人体健康风险研究

王珏旸, 林欣颖, 宋维昊, 陈笑强, 李梦雅, 王宁, 历红波. 市售面粉及面制品中镉的人体健康风险研究[J]. 环境化学, 2019, 38(6): 1232-1240. doi: 10.7524/j.issn.0254-6108.2018090101
引用本文: 王珏旸, 林欣颖, 宋维昊, 陈笑强, 李梦雅, 王宁, 历红波. 市售面粉及面制品中镉的人体健康风险研究[J]. 环境化学, 2019, 38(6): 1232-1240. doi: 10.7524/j.issn.0254-6108.2018090101
WANG Jueyang, LIN Xinying, SONG Weihao, CHEN Xiaoqiang, LI Mengya, WANG Ning, LI Hongbo. Human health risk assessment of cadmium in commercial wheat flour and products[J]. Environmental Chemistry, 2019, 38(6): 1232-1240. doi: 10.7524/j.issn.0254-6108.2018090101
Citation: WANG Jueyang, LIN Xinying, SONG Weihao, CHEN Xiaoqiang, LI Mengya, WANG Ning, LI Hongbo. Human health risk assessment of cadmium in commercial wheat flour and products[J]. Environmental Chemistry, 2019, 38(6): 1232-1240. doi: 10.7524/j.issn.0254-6108.2018090101

市售面粉及面制品中镉的人体健康风险研究

  • 基金项目:

    国家自然科学基金(21507057,41673101,21637002),江苏省自然科学基金(BK20150573)和国家重点研发计划项目(2016YFD0800807)资助.

Human health risk assessment of cadmium in commercial wheat flour and products

  • Fund Project: Supported by the National Natural Science Foundation of China (21507057, 41673101, 21637002), Jiangsu Provincial Natural Science Foundation (BK20150573) and the National Key Research and Development Program of China (2016YFD0800807).
  • 摘要: 对非吸烟人群,饮食是镉暴露的首要途径.近年来农产品镉含量超标问题在我国的不同类型重金属污染区被广泛报道,严重危害人体健康.但以往研究多关注大米中镉的人体健康风险,目前对我国市场上销售的面粉及面制品镉含量及健康风险的系统报道还较缺乏.本研究从我国不同省份采集了16份白面粉、16份全麦面粉、16份小麦麸皮及10份全麦面包样品,测定样品中镉的含量;采用体外生理原理提取法(Physiologically Based Extraction Test,PBET)的胃液提取阶段测定样品中镉的人体生物可给性,并基于镉生物可给性评价了面粉及面制品中镉的人体健康风险.白面粉、全麦面粉、小麦麸皮、全麦面包样品中镉的含量分别为6.8-24.9、8.4-50.2、21.8-199.6、13.8-28.0 μg·kg-1,平均值分别为15.6±5.1、25.7±11.8、64.7±43.5、17.5±4.0 μg·kg-1,所有白面粉、全麦面粉和面包样品中镉含量均远低于国家安全限定值100 μg·kg-1.镉含量的整体趋势为白面粉 -1 bw·d-1)远低于Joint FAO/WHO Expert Committee on Food Additives(JECFA)规定的每日允许的最大镉暴露剂量0.5 μg·kg-1 bw·d-1,表明了我国市面上销售的面粉及面制品可以安全食用.本研究通过对市场销售面粉及面制品中镉的含量、人体生物可给性的测定及健康风险的评价,为人们对面粉及面制品品牌及种类的选择提供建议,为规避食品镉危害做出重要贡献.
  • 加载中
  • [1] ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China:Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49:750-759.
    [2] RANDY L J, MICHAL K S. Environmental epigenomics and disease susceptibility[J]. Nature, 2007, 8:253-265.
    [3] MEHARG A A, NORTON, G, DEACON C, et al. Variation in rice cadmium related to human exposure[J]. Environmental Science & Technology, 2013, 47:5613-5618.
    [4] 张红振, 骆永明, 章海波, 等. 土壤环境质量指导值与标准研究V. 镉在土壤-作物系统中的富集规律与农产品质量安全[J]. 土壤学报, 2010, 47(4):628-638.

    ZHANG H Z, LUO Y M, ZHANG H B, et al. Study on soil environmental quality guidelines and standards V. modeling of cadmium uptake in soil-crop systems for human food safety in China[J]. Acta Pedolgica Sinica, 2010, 47(4):628-638(in Chinese).

    [5] 丁龙, 李冬冬, 汪承润, 等. 土壤镉诱导赤子爱胜蚓的氧化损伤、防御反应及其致毒阈值[J]. 环境化学, 2014, 33(7):1115-1122.

    DING L, LI D D, WANG C R, et al. Oxidative damage, defense response and toxicity threshold in Eisenia foetida exposed to cadmium-polluted soils[J]. Environmental Chemistry, 2014, 33(7):1115-1122(in Chinese).

    [6] ENGSTÖM A, MICHAËLSSON K., SUWAZONO Y, et al. Long term cadmium exposure and the association with bone mineral density and fractures in a population-based study among women[J]. Journal of Bone and Mineral Research, 2011, 26:486-495.
    [7] RIEDERER A M, BELOVA A, GEORGE B J, et a. Urinary cadmium in the 1999-2008 U.S. National Health and Nutrition Examination Survey (NHANES)[J]. Environmental Science & Technology, 2013, 47, 137-1147.
    [8] BERNARD A. Confusion about cadmium risks:The unrecognized limitations of an extrapolated paradigm[J]. Environmental Health Perspective, 2016, 124:1-5.
    [9] SATARUG S, GARRETT S H, SENS M A, et al. Cadmium, environmental exposure, and health outcomes[J]. Environmental Health Perspective, 2010, 118:182-190.
    [10] MENKE A, MUNTNER P, SILBERGELD E K, et al. Cadmium levels in urine and mortality among U.S. adults[J]. Environmental Health Perspective, 2009, 117:190-196.
    [11] GALLAGHER C M, MELIKER J R. Blood and urine cadmium, blood pressure, and hypertension:A systematic review and meta-analysis[J]. Environmental Health Perspective, 2010, 118:1676-1684.
    [12] GARCIA-ESQUINAS E, POLLAN M, TELLEZ-PLAZA M, et al. Cadmium exposure and cancer mortality in a prospective cohort:The strong heart study[J]. Environmental Health Perspective, 2014, 122:363-370.
    [13] ZHAO D, LIU R Y, XIANG P, et al. Applying cadmium relative bioavailability to assess dietary intake from rice to predict cadmium urinary excretion in nonsmokers[J]. Environmental Science & Technology, 2017, 51:6756-6764.
    [14] ZHENG J, CHEN K H, YAN X, et al. Heavy metals in food, house dust, and water from an e-waste recycling area in South China and the potential risk to human health[J]. Ecotoxicology and Environmental Safety, 2013, 96:205-212.
    [15] 张良运, 李恋卿, 潘根兴.南方典型产地大米Cd、Zn、Se含量变异及其健康风险探讨[J]. 环境科学, 2009, 30(9):2792-2797.

    ZHANG L Y, LI L Q, PAN G X. Variation in Cd, Zn and Se contents of polished rice and the potential health risk for subsistence 2 diet farmers from typical areas of South China[J]. Environmental Science, 2009,30(9):2792-2797(in Chinese).

    [16] HU Y A, CHENG H F, TAO, S. The challenges and solutions for cadmium-contaminated rice in China:A critical review[J]. Environment International, 2016, 92-93:515-532.
    [17] WILLIAMS P N, LEI M.; SUN G X et al. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice:Hunan, China[J]. Environmental Science & Technology, 2009, 43:637-642.
    [18] FU J J, ZHANG A Q, WANG T, et al. Influence of e-waste dismantling and its regulations:Temporal trend, spatial distribution of heavy metals in rice grains, and its potential health risk[J]. Environmental Science & Technology, 2013, 47:7437-7445.
    [19] CHEN H P, TANG Z, WANG P, et al. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice[J]. Environmental Pollution, 2018, 238:482-490.
    [20] ARAO T, KAWASAKI A, BABA K, et al. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice[J]. Environmental Science & Technology, 2009, 43:9361-9367.
    [21] 林于廉, 龙腾锐, 夏之宁, 等. 干湿交替模式下土壤中镉的释放特征[J]. 环境化学, 2008, 27(5):624-628.

    LIN Y Q, LONG T Y, XIA Z N, et al. The characteristics of the cadmium release from soil under the wet-dry cycle condition[J]. Environmental Chemistry, 2008, 27(5):624-628(in Chinese).

    [22] ZHAO D, JUHASZ A L, LUO J, et al. Mineral dietary supplement to decrease cadmium relative bioavailability in rice based on a mouse bioassay[J]. Environmental Science & Technology, 2017, 51:12123-12130.
    [23] RUBY M V, DAVIS A, SCHOOF R et al. Estimation of lead and arsenic bioavailability using a physiologically based extraction test[J]. Environmental Science & Technology, 1996, 30:422-430.
    [24] ZHAO F J, STROUD J L, EAGLING T, et al. Accumulation, distribution, and speciation of arsenic in wheat grain[J]. Environmental Science & Technology, 2010, 44:5464-5468.
    [25]
    [26] OLIVER D F, GORE P J, MOSS H J, et al. Cadmium in wheat-grain and milling products from some Australian flour mills[J]. Australian Journal of Agricultural Research, 1993, 44:1-11.
    [27]
    [28] 陈凤莲, 方桂珍, 胡波. 黑龙江地区小麦麸皮化学组成分析[J]. 粮食加工, 2005,21(4):464-466.

    CHEN F L, FANG G Z, HU B. Analysis of chemical compositions of wheat bran from Heilongjiang[J]. Grain Processing, 2005,21(4):464-466(in Chinese).

    [29] 付瑾, 崔岩山. 食物中营养物及污染物的生物可给性研究进展[J]. 生态毒理学报, 2011, 6(2):113-120.

    FU J, CUI Y S. Advances in bioaccessibiliy of nutrients and pollutants in food[J]. Asian Journal of Ecotoxicology, 2011, 6(2):113-120(in Chinese).

    [30] JECFA (Joint FAO/WHO Expert Committee on Food Additives). Safety evaluation of certain food additives and contaminants. WHO Food Additives Series No. 63, Prepared by the Seventy-second Meeting of JECFA[R]. World Health Organization, Geneva, 2011.
  • 加载中
计量
  • 文章访问数:  4459
  • HTML全文浏览数:  4456
  • PDF下载数:  66
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-09-01
  • 刊出日期:  2019-06-15

市售面粉及面制品中镉的人体健康风险研究

  • 1.  南京大学环境学院, 南京, 210023;
  • 2.  江苏省农业科学院农业资源与环境研究所, 南京, 210014
基金项目:

国家自然科学基金(21507057,41673101,21637002),江苏省自然科学基金(BK20150573)和国家重点研发计划项目(2016YFD0800807)资助.

摘要: 对非吸烟人群,饮食是镉暴露的首要途径.近年来农产品镉含量超标问题在我国的不同类型重金属污染区被广泛报道,严重危害人体健康.但以往研究多关注大米中镉的人体健康风险,目前对我国市场上销售的面粉及面制品镉含量及健康风险的系统报道还较缺乏.本研究从我国不同省份采集了16份白面粉、16份全麦面粉、16份小麦麸皮及10份全麦面包样品,测定样品中镉的含量;采用体外生理原理提取法(Physiologically Based Extraction Test,PBET)的胃液提取阶段测定样品中镉的人体生物可给性,并基于镉生物可给性评价了面粉及面制品中镉的人体健康风险.白面粉、全麦面粉、小麦麸皮、全麦面包样品中镉的含量分别为6.8-24.9、8.4-50.2、21.8-199.6、13.8-28.0 μg·kg-1,平均值分别为15.6±5.1、25.7±11.8、64.7±43.5、17.5±4.0 μg·kg-1,所有白面粉、全麦面粉和面包样品中镉含量均远低于国家安全限定值100 μg·kg-1.镉含量的整体趋势为白面粉 -1 bw·d-1)远低于Joint FAO/WHO Expert Committee on Food Additives(JECFA)规定的每日允许的最大镉暴露剂量0.5 μg·kg-1 bw·d-1,表明了我国市面上销售的面粉及面制品可以安全食用.本研究通过对市场销售面粉及面制品中镉的含量、人体生物可给性的测定及健康风险的评价,为人们对面粉及面制品品牌及种类的选择提供建议,为规避食品镉危害做出重要贡献.

English Abstract

参考文献 (30)

目录

/

返回文章
返回