南昌市道路尘PM2.5中重金属分布特征及健康风险评价

刘贤荣, 郑权, 胡恭任, 于瑞莲. 南昌市道路尘PM2.5中重金属分布特征及健康风险评价[J]. 环境化学, 2019, (7): 1609-1618. doi: 10.7524/j.issn.0254-6108.2018090505
引用本文: 刘贤荣, 郑权, 胡恭任, 于瑞莲. 南昌市道路尘PM2.5中重金属分布特征及健康风险评价[J]. 环境化学, 2019, (7): 1609-1618. doi: 10.7524/j.issn.0254-6108.2018090505
LIU Xianrong, ZHENG Quan, HU Gongren, YU Ruilian. Characteristics and health risk assessment of heavy metals in PM2.5 fraction of road dust in Nanchang City[J]. Environmental Chemistry, 2019, (7): 1609-1618. doi: 10.7524/j.issn.0254-6108.2018090505
Citation: LIU Xianrong, ZHENG Quan, HU Gongren, YU Ruilian. Characteristics and health risk assessment of heavy metals in PM2.5 fraction of road dust in Nanchang City[J]. Environmental Chemistry, 2019, (7): 1609-1618. doi: 10.7524/j.issn.0254-6108.2018090505

南昌市道路尘PM2.5中重金属分布特征及健康风险评价

    通讯作者: 于瑞莲, E-mail: ruiliany@hqu.edu.cn
  • 基金项目:

    国家自然科学基金(21477042,21377042)和福建省自然科学基金(2016J01065)资助.

Characteristics and health risk assessment of heavy metals in PM2.5 fraction of road dust in Nanchang City

    Corresponding author: YU Ruilian, ruiliany@hqu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (21477042,21377042)and the Natural Science Foundation of Fujian Province, China(2016J01065).
  • 摘要: 为了解南昌市道路尘PM2.5中重金属元素的分布特征和健康风险,利用颗粒物再悬浮采样器采集了道路尘中的PM2.5样品,用电感耦合等离子体质谱仪和原子荧光光谱仪测定了样品中11种重金属元素的含量.结果表明,道路尘PM2.5中Mn、Zn、Cr、Cu、Pb、V、As、Ni、Co、Cd和Hg的平均含量分别为1014、208.17、106.47、102.40、62.12、39.59、28.93、24.07、7.86、0.58、0.53 mg·kg-1,除V和Co外均大于南昌市土壤元素背景值,整体上次干道和支路的金属含量会高于主干道重金属的含量,比国内外其他城市相对要低.地累积指数结果显示,Cd、Hg、Cu、Mn和Zn处于偏中度污染,As和Pb属于轻度污染,其余元素处于无污染水平.日均暴露剂量表明,Mn在儿童的非致癌日均暴露剂量最高(摄食:2.83×10-3 mg·(kg·d)-1,呼吸吸入:2.50×10-7 mg·(kg·d)-1,皮肤接触:6.87×10-6 mg·(kg·d)-1),经口摄食是人体暴露的主要途径,Cr的终身暴露剂量最高(儿童:8.63×10-9 mg·(kg·d)-1,成年男性:9.12×10-9 mg·(kg·d)-1,成年女性:8.12×10-9 mg·(kg·d)-1).11种重金属对儿童、成年女性和成年男性的非致癌风险值之和分别为0.58,0.19和0.17,小于可接受风险值1.0,As、Cr、Mn是主要贡献元素;5种致癌元素(Cr、As、Co、Ni和Cd)经呼吸途径对人体的总致癌风险值均小于可接受水平10-6,成年男性(4.29×10-7)略高于儿童(4.06×10-7)和成年女性(3.82×10-7),Cr和As是主要贡献元素.
  • 加载中
  • [1] 孙颖,潘月鹏,李杏茹,等. 京津冀典型城市大气颗粒物化学成分同步观测研究[J]. 环境科学, 2011,32(9):2732-2740.

    SUN Y, PAN Y P, LI X R, et al. Chemical composition and mass closure of particulate matter in Beijing, Tianjin and Hebei megacities, northern China[J]. Environmental Science, 2011,32(9):2732-2740(in Chinese).

    [2] 汪浪,杨海龙,李晓燕. 中国部分省会城市PM2.5中重金属水平及影响因素分析[J]. 环境化学, 2017,36(1):72-83.

    WANG L, YANG H L, LI X Y. Analysis of heavy metals contents in PM2.5 in some provincial capital cities in China and their affecting factors[J]. Environmental Chemistry, 2017,36(1):72-83(in Chinese).

    [3] HAN L, ZHOU W, LI W. City as a major source area of fine particulate (PM2.5) in China[J]. Environmental Pollution, 2015, 206:183-187.
    [4] BELL M L, EBISU K, PENG R D. Community-level spatial heterogeneity of chemical constituent levels of fine particulates and implications for epidemiological research[J]. Journal of Exposure Science and Environmental Epidemiology, 2011, 21(4):372-384.
    [5] KIM K H, KABIR E, KABIR S. A review on the human health impact of airborne particulate matter[J]. Environment International, 2015, 74:136-143.
    [6] GUNAWARDANA C, EGODAWATTA P, GOONETILLEKE A. Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces[J]. Environmental Pollution, 2014, 184(1):44-53.
    [7] 刘爱明,杨柳,吴亚玲,等. 城市区域大气颗粒物的健康效应研究[J]. 中国环境监测,2012,28(5):19-23.

    LIU A M,YANG L, WU Y L, et al. Research on the health effects of atmospheric particulates in city region[J]. Environmental Monitoring in China, 2012,28(5):19-23(in Chinese).

    [8] 赵阳,胡恭任,于瑞莲,等. 2013年南昌市区PM2.5的浓度水平及时空分布特征与来源[J]. 环境科学研究, 2017,30(6):855-863.

    ZHAO Y, HU G R, YU R L, et al. Concentrations and spatial-temporal characteristics and source analysis of PM2.5 in Nanchang city in 2013[J]. Research of Environmental Sciences, 2017,30(6):855-863(in Chinese).

    [9] 刘忠马,徐义邦,樊孝俊,等. 南昌市秋季大气PM2.5浓度及化学组分特征分析[J]. 环境污染与防治, 2015,37(9):55-59.

    LIU Z M, XU Y B, FAN X J, et al. Content and chemical composition characteristics of PM2.5 in autumn in Nanchang[J]. Environmental Pollution and Control, 2015,37(9):55-59(in Chinese).

    [10] 赵阳,林晓辉,胡恭任,等. 南昌市秋季PM2.5中多环芳烃的污染特征、风险评价及来源分析[J]. 环境化学, 2016,35(3):500-507.

    ZHAO Y, LIN X H, HU G R, et al. Pollution characteristics, risk assessment and source analysis of polycyclic aromatic hydrocarbons in PM2.5 collected in autumn in Nanchang City[J]. Environmental Chemistry, 2016,35(3):500-507(in Chinese).

    [11] 林晓辉,赵阳,樊孝俊,等. 南昌市秋季大气PM2.5中金属元素富集特征及来源分析[J]. 环境科学,2016,37(1):35-40.

    LIN X H, ZHAO Y, FAN X J, et al. Enrichment characteristics and source analysis of metal elements in PM2.5 in autumn in Nanchang city[J]. Environmental Science, 2016,37(1):35-40(in Chinese).

    [12] ZHAO Y, YU R, HU G, et al. Chemical characteristics and Pb isotopic compositions of PM2.5 in Nanchang, China[J]. Particuology,2017,32(3):95-102.
    [13] 郭琳,何宗健,尹丽. 南昌市夏季PM2.5中多环芳烃来源解析[J]. 环境污染与防治,2010,32(11):58-62.

    GUO L, HE Z J, YIN L. Source apportionment of polycyclic aromatic hydrocarbons in PM2.5 in summer of Nanchang[J]. Environmental Pollution and Control, 2010,32(11):58-62(in Chinese).

    [14] ZHAO Y, YU R L, HU G R, et al. Characteristics and environmental significance of rare earth elements in PM2.5 of Nanchang, China[J]. Journal of Rare Earths, 2017, 35(1):98-106.
    [15] 魏秀芝,左嘉,魏宝梅. 南昌市扬尘污染现状及防治情况报告[J]. 黑龙江科技信息,2016(10):13. WEI X Z,ZUO J,WEI B M. Report on status and prevention of dust pollution in Nanchang City[J].Heilongjiang Science and Technology Information, 2016(10

    ):13(in Chinese).

    [16] MULLER G. Index of geoaccumulation in sediments of the Rhine River[J]. Geojournal, 1969, 2(108):108-118.
    [17] 何纪力,徐光炎,朱慧民,等. 江西省土壤环境背景值研究[M]. 北京:中国环境科学出版社, 2006. HE J L, XU G Y, ZHU H M, et al. Research on Jiangxi province soil environmental background value[M]. Beijing:China Environmental Science Press, 2006(in Chinese).
    [18] USEPA.EPA/600/P-95/002Fa. Exposure factors handbook[M]. Washington DC:USEPA, 2011.
    [19] USEPA. Risk assessment guidance for Superfund, Vol. I:human health evaluation manual[R]. Washington D. C.:Office of Emergency and Response, 1989.
    [20] USEPA. Supplemental guidance for developing soil screening levels for superfund sites[R]. Washington, D. C.:Office of Emergency and Response, 2002.
    [21] 环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京:中国环境出版社, 2013. Ministry of Environmental Protection. Exposure factor handbook of Chinese population(adults)[M]. Beijing:China Environmental Science Press, 2013(in Chinese).
    [22] 环境保护部. 中国人群暴露参数手册(儿童卷)[M]. 北京:中国环境出版社, 2016. Ministry of Environmental Protection. Exposure factor handbook of Chinese population(children)[M]. Beijing:China Environmental Science Press, 2016(in Chinese).
    [23] SLEZAKOVA K, MORAIS S, PEREIRA M C. Trace metals in size-fractionated particulate matter in a Portuguese hospital:exposure risks assessment and comparisons with other countries[J]. Environmental Science and Pollution Research, 2014, 21(5), 3604-3620.
    [24] FERREIRA-BAPTISTA L, MIGUEL E D. Geochemistry and risk assessment of street dust in Luanda, Angola:A tropical urban environment[J]. Atmospheric Environment, 2005, 39(25):4501-4512.
    [25] 杨忠平,王雷,翟航,等. 长春市城区近地表灰尘重金属健康风险评价[J]. 中国环境科学, 2015,35(4):1247-1255.

    YANG Z P, WANG L, ZHAI H. et al. Study on health risk of potentially toxic metals in near-surface urban dust in Changchun City[J]. China Environmental Science, 2015,35(4):1247-1255(in Chinese).

    [26] LIACOS J W, KAM W, DELFINO R J, et al. Characterization of organic, metal and trace element PM2.5 species and derivation of freeway-based emission rates in Los Angeles, CA[J]. Science of the Total Environment, 2012, 435-436(2):159-166.
    [27] TAIWO A M, HARRISON R M, SHI Z. A review of receptor modelling of industrially emitted particulate matter[J]. Atmospheric Environment, 2014, 97:109-120.
    [28] MEN C, LIU R M, XU F, et al. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China[J]. Science of the Total Environment, 2018, 612:138-147.
    [29] 张静,张衍杰,方小珍,等. 道路扬尘PM2.5中金属元素污染特征及健康风险评价[J]. 环境科学,2017,38(10):4071-4076.

    ZHANG J, ZHANG Y J, FANG X Z, et al. Characteristics and health risk assessment of metallic elements in PM2.5 fraction of road dust[J]. Environmental Science, 2017,38(10):4071-4076(in Chinese).

    [30] BI C J, ZHOU Y, CHEN Z L, et al. Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China[J]. Science of the Total Environment, 2018, 619-620:1349-1357.
    [31] 石栋奇,卢新卫. 西安城区路面细颗粒灰尘重金属污染水平及来源分析[J]. 环境科学,2018,39(7):3126-3133.

    SHI D Q, LU X W. Contamination level and source analysis of heavy metals in the finer particles of urban road dust from Xi'an, China[J]. Environmental Science, 2018,39(7):3126-3133(in Chinese).

    [32] 王利军,卢新卫,雷凯,等. 宝鸡市街尘重金属元素含量、来源及形态特征[J]. 环境科学,2011,32(8):2471-2476.

    WANG L J, LU X W, LEI K, et al. Content, source and speciation of heavy metal elements of street dusts in Baoji City[J]. Environmental Science, 2011,32(8):2471-2476(in Chinese).

    [33] LI X D, POON C S, LIU P S. Heavy metal contamination of urban soils and street dusts in Hong Kong[J]. Applied Geochemistry, 2001, 16(11-12):1361-1368.
    [34] YEUNG Z L L, KWOK R C W, YU K N. Determination of multi-element profiles of street dust using energy dispersive X-ray fluorescence (EDXRF)[J]. Applied Radiation and Isotopes, 2003, 58(3):339-346.
    [35] ŠKRBIĆ B D, BULJOVČIĆ M, JOVANOVIĆ G, et al. Seasonal, spatial variations and risk assessment of heavy elements in street dust from Novi Sad, Serbia[J]. Chemosphere, 2018, 205:452-462.
    [36] BOURLIVA A, KANTIRANIS N, PAPADOPOULOU L, et al. Seasonal and spatial variations of magnetic susceptibility and potentially toxic elements (PTEs) in road dusts of Thessaloniki city, Greece:A one-year monitoring period[J]. Science of the Total Environment, 2018, 639:417-427.
  • 加载中
计量
  • 文章访问数:  852
  • HTML全文浏览数:  852
  • PDF下载数:  44
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-09-05

南昌市道路尘PM2.5中重金属分布特征及健康风险评价

    通讯作者: 于瑞莲, E-mail: ruiliany@hqu.edu.cn
  • 华侨大学化工学院, 厦门, 361021
基金项目:

国家自然科学基金(21477042,21377042)和福建省自然科学基金(2016J01065)资助.

摘要: 为了解南昌市道路尘PM2.5中重金属元素的分布特征和健康风险,利用颗粒物再悬浮采样器采集了道路尘中的PM2.5样品,用电感耦合等离子体质谱仪和原子荧光光谱仪测定了样品中11种重金属元素的含量.结果表明,道路尘PM2.5中Mn、Zn、Cr、Cu、Pb、V、As、Ni、Co、Cd和Hg的平均含量分别为1014、208.17、106.47、102.40、62.12、39.59、28.93、24.07、7.86、0.58、0.53 mg·kg-1,除V和Co外均大于南昌市土壤元素背景值,整体上次干道和支路的金属含量会高于主干道重金属的含量,比国内外其他城市相对要低.地累积指数结果显示,Cd、Hg、Cu、Mn和Zn处于偏中度污染,As和Pb属于轻度污染,其余元素处于无污染水平.日均暴露剂量表明,Mn在儿童的非致癌日均暴露剂量最高(摄食:2.83×10-3 mg·(kg·d)-1,呼吸吸入:2.50×10-7 mg·(kg·d)-1,皮肤接触:6.87×10-6 mg·(kg·d)-1),经口摄食是人体暴露的主要途径,Cr的终身暴露剂量最高(儿童:8.63×10-9 mg·(kg·d)-1,成年男性:9.12×10-9 mg·(kg·d)-1,成年女性:8.12×10-9 mg·(kg·d)-1).11种重金属对儿童、成年女性和成年男性的非致癌风险值之和分别为0.58,0.19和0.17,小于可接受风险值1.0,As、Cr、Mn是主要贡献元素;5种致癌元素(Cr、As、Co、Ni和Cd)经呼吸途径对人体的总致癌风险值均小于可接受水平10-6,成年男性(4.29×10-7)略高于儿童(4.06×10-7)和成年女性(3.82×10-7),Cr和As是主要贡献元素.

English Abstract

参考文献 (36)

目录

/

返回文章
返回