超声辅助乙二醇双(2-氨基乙基醚)四乙酸洗脱土壤重金属及环境风险削减评价

戴竹青, 谢明洋, 王明新, 杜尔登, 张文艺. 超声辅助乙二醇双(2-氨基乙基醚)四乙酸洗脱土壤重金属及环境风险削减评价[J]. 环境化学, 2019, (7): 1507-1517. doi: 10.7524/j.issn.0254-6108.2018090601
引用本文: 戴竹青, 谢明洋, 王明新, 杜尔登, 张文艺. 超声辅助乙二醇双(2-氨基乙基醚)四乙酸洗脱土壤重金属及环境风险削减评价[J]. 环境化学, 2019, (7): 1507-1517. doi: 10.7524/j.issn.0254-6108.2018090601
DAI Zhuqing, XIE Mingyang, WANG Minxing, DU Erdeng, ZHANG Wenyi. Ultrasonic assisted ethylenebis(oxyethylenenitrilo)tetraacetic acid washing of heavy metal contaminated soil and assessment of environmental risk reduction[J]. Environmental Chemistry, 2019, (7): 1507-1517. doi: 10.7524/j.issn.0254-6108.2018090601
Citation: DAI Zhuqing, XIE Mingyang, WANG Minxing, DU Erdeng, ZHANG Wenyi. Ultrasonic assisted ethylenebis(oxyethylenenitrilo)tetraacetic acid washing of heavy metal contaminated soil and assessment of environmental risk reduction[J]. Environmental Chemistry, 2019, (7): 1507-1517. doi: 10.7524/j.issn.0254-6108.2018090601

超声辅助乙二醇双(2-氨基乙基醚)四乙酸洗脱土壤重金属及环境风险削减评价

    通讯作者: 王明新, E-mail: wmxcau@163.com
  • 基金项目:

    国家自然科学基金(41641032)和江苏省科技支撑计划(BE2016653)资助.

Ultrasonic assisted ethylenebis(oxyethylenenitrilo)tetraacetic acid washing of heavy metal contaminated soil and assessment of environmental risk reduction

    Corresponding author: WANG Minxing, wmxcau@163.com
  • Fund Project: Supported by the National Natural Science Foundation of China (41641032) and Jiangsu Science Technology Support Program(BE2016653).
  • 摘要: 采用超声辅助乙二醇双(2-氨基乙基醚)四乙酸(EGTA)淋洗修复重金属污染土壤,结果表明,超声辅助EGTA对Cu和Cd的洗脱效果较好,对Zn和Pb的洗脱能力较弱,增加液固比可显著提高淋洗效果,增加超声时间和功率的效果则相对较小.淋洗处理后Cu、Zn和Cd浸出浓度减小,Pb浸出浓度增加.构建综合考虑土壤重金属残留量、浸出浓度和毒性的环境风险指数对修复效果进行评价,考察了EGTA投加量、液固比、超声时间以及超声功率等淋洗条件对重金属去除率和环境风险削减率的影响,并进行模拟和优化.当淋洗条件为EGTA投加量1.7 g·L-1、液固比10、超声时间40 min、超声功率600 W时,环境风险削减率预测值为79.7%,实测值为78.0%.可还原态Cu残留量、弱酸提取态Pb残留量和可还原态Zn残留量显著减少,弱酸提取态Zn残留量显著增加,而Cd各不同形态组分残留量均显著减少.超声辅助EGTA淋洗可有效削减Cu和Zn环境风险,但显著提高了Pb环境风险,EGTA投加量过高还可能提高Cd的环境风险.因此不适用于Pb污染土壤修复,用于Cd污染土壤修复时需管控其可能产生的二次污染风险.
  • 加载中
  • [1] 孙涛,陆扣萍,王海龙.不同淋洗剂和淋洗条件下重金属污染土壤淋洗修复研究进展[J].浙江农林大学学报,2015,32(1):140-149.

    SUN T, LU K P, WANG H L, Advance in washing technology for remediation of heavy metal contaminated soils:effects of eluants and washing conditions[J]. Journal of Zhejiang A & F University,2015, 32(1):140-149(in Chinese).

    [2] KHALID S, SHAHID M, NIAZI N K, et al. A comparison of technologies for remediation of heavy metal contaminated soils[J].Journal of Geochemical Exploration, 2017, 182(B):247-268.
    [3] 许端平,谷长建,李晓波,等.单一及复合淋洗剂淋洗修复污染土壤实验研究[J].应用化工,2017,46(1):37-40.

    XU D P,GU C J,LI X B,et al. Study on leaching heavy metal-contaminated soil with organic acids[J]. Applied Chemical Industry, 2017,46(1):37-40(in Chinese).

    [4] 周芙蓉,钟礼春,杨寿南.复合淋洗剂对镉污染土壤的淋洗效果[J].安徽农业科学, 2017,45(23):52-54.

    ZHOU F R,ZHONG L C,YANG S N. Leaching effects of compound eluent on cadmium contaminated soil[J].Journal of Anhui Agricultural Sciences, 2017, 45(23):52-54(in Chinese).

    [5] 可欣,张向,李培军,等.利用酒石酸土柱淋洗法修复重金属污染土壤[J].深圳大学学报理工版,2009,26(3):240-245.

    KE X, ZHANG X, LI P J, et al. Leaching remediation of a heavy metal contaminated soil using tartaric acid[J].Journal of Shenzhen University 2009, 26(3):240-245(in Chinese).

    [6] JELUSIC M, LESTAN D. Remediation and reclamation of soils heavily contaminated with toxic metals as a substrate for greening with ornamental plants and grasses[J].Chemosphere, 2015, 138:1001-1007.
    [7] RACE M, MAROTTA R, FABBRICINO M, et al. Copper and zinc removal from contaminated soils through soil washing process using ethylenediaminedisuccinic acid as a chelating agent:A modeling investigation[J]. Journal of Environmental Chemical Engineering, 2016, 4(3):2878-2891.
    [8] 薛腊梅,刘志超,尹颖,等.微波强化EDDS淋洗修复重金属污染土壤研究[J].农业环境科学学报,2013,32(8):1552-1557.

    XUE L M, LIU Z C, YIN Y, et al. Microwave-enhanced remediation of Cd, Pb and Zn contaminated soil using EDDS as a leaching agent[J]. Journal of Agro-Environment Science, 2013, 32(8):1552-1557(in Chinese).

    [9] 刘春早,黄益宗,雷鸣,等.湘江流域土壤重金属污染及其生态环境风险评价[J].环境科学,2012,33(1):260-265.

    LIU C Z, HUANG Y Z,LEI M et al. Soil Contamination and assessment of heavy metals of Xiangjiang River basin[J]. Environmental Science, 2012, 33(1):260-265(in Chinese).

    [10] 吴健,王敏,张辉鹏,等.复垦工业场地土壤和周边河道沉积物重金属污染及潜在生态风险[J].环境科学,2018,39(12):1-11.

    WU J,WANG M,ZHANG H P, et al. Heavy metal pollution and potential ecological risk of soil in reclaimed industrial sites and surrounding river sediments[J]. Environmental Science, 2018, 39(12):1-11(in Chinese).

    [11] 孙叶芳,谢正苗,徐建明,等.TCLP法评价矿区土壤重金属的生态环境风险[J].环境科学,2005,26(3):152-156.

    SUN Y F, XIE Z M, XU J M, et al. Assessment of toxicity of heavy metal contaminated soils by toxicity characteristic leaching procedure[J]. Environmental Science, 2005, 26(3):152-156(in Chinese).

    [12] 陈建军,俞天明,王碧玲,等.用TCLP和形态法评估含磷物质修复铅锌矿污染土壤的效果及其影响因素[J].环境科学,2010,31(1):185-191.

    CHEN J J,YU T M,WANG B L, et al. Evaluation of phosphate-containing amendments on remediation effect and influential factors in a Lead Zinc mining tailings contaminated soil using TCLP and forms[J]. Environmental Science, 2010, 31(1):185-191(in Chinese).

    [13] 刘春早,黄益宗,雷鸣,等.重金属污染评价方法(TCLP)评价资江流域土壤重金属生态风险[J].环境化学,2011,30(9):1582-1589.

    LIU C Z, HUANG Y Z, LEI Mi, et al. Assessment of ecological risks of heavy metal contaminated soils in the Zijiang River region by toxicity characteristic leaching procedure[J]. Environmental Chemistry, 2011, 30(9):1582-1589(in Chinese).

    [14] NEMATI K, ABU BAKAR N K, ABAS M R, et al. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia.[J]. Journal of Hazardous Materials, 2011, 192(1):402-410.
    [15] 张朝阳,彭平安,宋建中,等.改进BCR法分析国家土壤标准物质中重金属化学形态[J].生态环境学报,2012, 21(11):1881-1884.

    ZHANG C Y, PENG P G, SONG J Z, et al. Utilization of modified BCR procedure for the chemical speciation of heavy metals in Chinese soil reference material[J]. Ecology and Environmental Sciences, 2012, 21(11):1881-1884(in Chinese).

    [16] 蔡怡敏, 陈卫平, 彭驰,等.顺德水道土壤及沉积物中重金属分布及潜在生态风险评价[J].环境科学,2016, 37(5):1763-1770.

    CAI Y M, CHEN W P, PENG C. Spatial distribution and potential ecological risk assessment of heavy metals in soils and sediments in Shunde waterway, Southern China[J]. Environmental Science, 2016, 37(5):1763-1770(in Chinese).

    [17] 中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990. China Environmental Monitoring Station. Background value of soil elements in China[M]. Beijing:China Environmental Science Press, 1990(in Chinese).
    [18] 吴劲楠,龙健,刘灵飞,等.某铅锌矿区农田重金属分布特征及其风险评价[J].中国环境科学,2018,38(3):1054-1063.

    WU J N, LONG J, LIU L F, et al. Spatial distribution and risk assessment of heavy metal pollution in farmland soil of a lead-zinc mining area[J]. China Environmental Science, 2018, 38(3):1054-1063(in Chinese).

    [19] 卢聪,李涛,付义临,等.基于生物可利用性与宽浓度范围的Hakanson潜在生态风险指数法的创建——以小秦岭金矿区农田土壤为例[J].地质通报,2015,34(11):2054-2060.

    LU C, LI T, FU Y L, et al. The improvement of Hakanson index based on bioavailability and wide concentration range:A case study of the farmland soil over the Xiaoqinling gold mining area for potential ecological risk assessment of heavy metals of contaminated soil[J]. Geological Bulletin of China, 2015, 34(11):2054-2060(in Chinese).

    [20] 杨冰凡,胡鹏杰,李柱,等.重金属高污染农田土壤EDTA淋洗条件初探[J].土壤,2013,45(5):928-932.

    YANG B F, HU P J, LI Z, et al. Research on the wash condition using EDTA for a heavy metal severely contaminated agricultural soil[J]. Soil, 2013, 45(5):928-932(in Chinese).

    [21] 杜尔登,张申耀,冯欣欣,等.光催化降解内分泌干扰物双酚A的响应面分析与优化[J].环境工程学报,2014,8(12):5124-5128

    DU E D,ZHANG S Y, FENG X X, et al. Response surface analysis and optimization for photocatalytic degradation of endocrine disruptor chemical bisphenol A[J]. Chinese Journal of Environmental Engineering, 2014, 8(12):5124-5128(in Chinese).

    [22] 张帆,张进明,肖梅,等.响应面法优化催化臭氧氧化处理邻苯二甲酸二甲酯废水的研究[J].环境污染与防治,2017,39(10):1092-1096.

    ZHANG F, ZHANG J M, XIAO M, et al. Optimization of catalytic oznation dimethyl phthalate wastewater treatment with response surface methodology[J]. Environmental pollution and Control, 2017, 39(10):1092-1096(in Chinese).

    [23] 荀志祥,姚静波,王明新,等.超声辅助EDDS.EGTA淋洗对土壤重金属形态、环境风险的影响及响应面优化[J].环境科学学报2018,38(7):2858-2867.

    XUN Z X, YAO J B, WANG M X, et al. Effects of ultrasound-assisted EDDS/EGTA washing on specification and environmental of heavy metals in soil and optimization by response surface method[J]. Acta Scientiae Circumstantiae, 2018, 38(7):2858-2867(in Chinese).

    [24] MU'AZU N D, HALADU S A, JARRAH N, et al. Polyaspartate extraction of cadmium ions from contaminated soil:Evaluation and optimization using central composite design[J]. Journal of Hazardous Materials, 2018, 342:58-68.
    [25] 林维晟,吴海泉,胡家朋,等.生物酶生态修复重金属污染土壤[J].环境工程学报,2015,9(12):6147-6153.

    LIN W S, WU H Q, HU J P, et al Bioremediation of heavy metal contaminated soil by enzymes[J]. Chinese Journal of Environmental Engineering, 2015, 9(12):6147-6153(in Chinese).

    [26] 林维晟,龚新怀,胡家朋,等.酶强化茶皂素修复重金属污染土壤的研究[J].中国水土保持,2015(6):44-48. LIN W S, GONG X H, HU J P, et al.Rehabilitation of heavy metal contaminated soil by enzyme strengthened tea saponin[J]. Soil and Water Conservation in China, 2015

    (6):44-48(in Chinese).

    [27] BEIVUAN J, TSANG D C, OK Y S, et al. Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site[J]. Chemosphere, 2016, 159:426-432.
    [28] ZHANG W H, HUANG H, TAN F F et al. Influence of EDTA washing on the species and mobility of heavy metals residual in soils[J]. Journal of Hazardous Materials, 2010, 173(1-3):369-376.
    [29] 尹雪,陈家军,吕策.螯合剂复配对实际重金属污染土壤洗脱效率影响及形态变化特征[J].环境科学,2014,35(2):733-739.

    YIN X, CHEN J J, LU C. Impact of compounded chelants on removal of heavy metals and characteristics of morphologic change in soil from heavy metals contaminated sites[J]. Environmental Science, 2014, 35(2):733-739(in Chinese).

    [30] 刘仕翔,胡三荣,罗泽娇. EDTA和CA复配淋洗剂对重金属复合污染土壤的淋洗条件研究[J].安全与环境工程,2017,24(3):77-83.

    LIU S X, HU S R,LUO Z J. Study on compounding EDTA and CA leaching heavy metals contaminated soil[J]. Safety and Environmental Engineering, 2017, 24(3):77-83(in Chinese).

  • 加载中
计量
  • 文章访问数:  1002
  • HTML全文浏览数:  1002
  • PDF下载数:  27
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-09-06

超声辅助乙二醇双(2-氨基乙基醚)四乙酸洗脱土壤重金属及环境风险削减评价

    通讯作者: 王明新, E-mail: wmxcau@163.com
  • 常州大学环境与安全工程学院, 常州, 213164
基金项目:

国家自然科学基金(41641032)和江苏省科技支撑计划(BE2016653)资助.

摘要: 采用超声辅助乙二醇双(2-氨基乙基醚)四乙酸(EGTA)淋洗修复重金属污染土壤,结果表明,超声辅助EGTA对Cu和Cd的洗脱效果较好,对Zn和Pb的洗脱能力较弱,增加液固比可显著提高淋洗效果,增加超声时间和功率的效果则相对较小.淋洗处理后Cu、Zn和Cd浸出浓度减小,Pb浸出浓度增加.构建综合考虑土壤重金属残留量、浸出浓度和毒性的环境风险指数对修复效果进行评价,考察了EGTA投加量、液固比、超声时间以及超声功率等淋洗条件对重金属去除率和环境风险削减率的影响,并进行模拟和优化.当淋洗条件为EGTA投加量1.7 g·L-1、液固比10、超声时间40 min、超声功率600 W时,环境风险削减率预测值为79.7%,实测值为78.0%.可还原态Cu残留量、弱酸提取态Pb残留量和可还原态Zn残留量显著减少,弱酸提取态Zn残留量显著增加,而Cd各不同形态组分残留量均显著减少.超声辅助EGTA淋洗可有效削减Cu和Zn环境风险,但显著提高了Pb环境风险,EGTA投加量过高还可能提高Cd的环境风险.因此不适用于Pb污染土壤修复,用于Cd污染土壤修复时需管控其可能产生的二次污染风险.

English Abstract

参考文献 (30)

目录

/

返回文章
返回