生物表面活性剂和化学螯合剂强化无柄小叶榕修复Cd、Cu重金属污染盐碱地
Biosurfactants generated from Marine Microbe and Chelator assisted remediation of Cadmium and Copper contaminated Saline-alkaline Soil by Ficus concinna var.Subsessilis
-
摘要: 采用盆栽试验研究海洋细菌和酵母产生物表面活性剂、化学螯合剂对无柄小叶榕(Ficus concinna var.Subsessilis)修复盐碱地重金属Cd、Cu的强化效果.结果表明,强化试验下无柄小叶榕能耐受Cd、Cu胁迫正常生长,且体内重金属含量随生物表面活性剂投加浓度增大而升高,表现为根>地上部分;300 mg·kg-1细菌产生物表面活性剂强化下,根部Cd含量最大值为313 mg·kg-1,1 mmol·kg-1柠檬酸(CA)-300 mg·kg-1酵母产生物表面活性剂强化下,根部Cu最大含量为2156 mg·kg-1.强化剂添加下,能显著提高Cd、Cu在小叶榕体内的累积量,无柄小叶榕对土壤Cd、Cu的吸收富集能力显著提高,1 mmol·kg-1 CA-300 mg·kg-1酵母产生物表面活性剂强化下Cd的最大富集系数为(9.76±0.10),是对照组S1(1.1±0.02)的8.90倍,300 mg·kg-1酵母产生物表面活性剂单独强化下Cu的最大富集系数为(7.42±0.16),是S1(0.77±0.03)的9.60倍;无柄小叶榕向地上转移Cu的能力较弱,TF<1,对Cu的提取修复潜能有限;300 mg·kg-1细菌产生物表面活性剂强化下Cd的最大修复率为2.56%,是对照组S1的4.70倍,300 mg·kg-1细菌产生物表面活性剂-1 mmol·kg-1 EDTA联合强化下Cu的最大修复率为1.80%,为S1的3.30倍.综上,无柄小叶榕对重金属污染的盐碱地有良好的修复潜力,生物表面活性剂和化学螯合剂的添加可有效提高小叶榕对重金属Cd和Cu的吸收富集效率.Abstract: The strengthening effects of surfactants produced by marine bacteria and yeast and chemical chelators on the removal of heavy metals Cd and Cu in saline-alkaline soil by Ficus concinna var.subsessilis were studied in pot experiments. The results showed when adding Cd and Cu, Ficus concinna var.subsessilis was able to grow well, and the heavy metal content in the plants increased with the increasing addition of the biosurfactant, and the heavy metal content in the root was higher than in the shoot. With the enhancement of 300 mg·kg-1 bacterial surfactant, the maximum content of Cd in the root was 313 mg·kg-1, whereas with 1 mmol·kg-1 CA-300 mg·kg-1 yeast surfactant addition, and the maximum content of Cu in the root was 2156 mg·kg-1. The accumulation of Cd and Cu in Ficus concinna var.subsessilis was significantly increased by the addition of the fortifier, and the absorption and enrichment capacity of Ficus concinna var.subsessilis to Cd and Cu in the soil of was remarkably increased. The maximum enrichment coefficient of Cd under the enhancement of 1 mmol·kg-1 CA-300 mg·kg-1 yeast surfactant was (9.76±0.10), which was 8.90 times as many as the control group S1 (1.1±0.02). The maximum enrichment coefficient of Cu under the single enhancement of 300 mg·kg-1 yeast surfactant was (7.42±0.16), which was 9.60 times as many as the control group S1 (0.77±0.03). It was weak for Ficus concinna var.subsessilis to transfer Cu from the shoot to the upper parts, and TF was below to1, which showed a limited extraction and repair potential of Ficus concinna var.subsessilis for Cu. The maximum repair rate of Cd with the combined enhancement of 300 mg·kg-1 bacterial surfactant was 2.56%, which was 4.70 times as many as in the blank reaction system "S1", and the maximum repair rate of Cu with the combined enhancement of 300 mg·kg-1 bacterial surfactant-1 mmol·kg-1 EDTA was 1.80%, which was 3.30 times as many as in the blank reaction system "S1". Then, the Ficus concinna var.subsessilis has a better potential to remove the heavy metal in saline-alkali soil, and the addition of biological surfactant and chemical chelator can effectively improve the absorption and enrichment efficiency of heavy metal Cd and Cu in Ficus concinna var.subsessilis.
-
Key words:
- Ficus concinna var.Subsessilis /
- cadmium /
- copper /
- biosurfactant /
- chelator /
- heavy metal pollution /
- saline-alkaline soil
-
[1] LI Z Y, MA Z W, VAN DER KUIJP T J, et al. A review of soil heavy metal pollution from mines in China:Pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468-469:843-853. [2] 雷国建, 陈志良, 刘千钧, 等. 生物表面活性剂及其在重金属污染土壤淋洗中的应用[J]. 土壤通报, 2013, 44(6):1508-1511. LEI G J, CHEN Z L, LIU Q J, et al. Biosurfactants and their applications in soil flushing of heavy metal pollution[J].Chinese Journal of Soil Science, 2013, 44(6):1508-1511(in Chinese).
[3] MULLIGAN C N, YONG R N, GIBBS B F. Heavy metal removal from sediments by biosurfactants[J]. Journal of Hazardous Materials, 2001, 85(1/2):111-125. [4] 朱清清, 邵超英, 张琢, 等. 生物表面活性剂皂角苷增效去除土壤中重金属的研究[J]. 环境科学学报, 2010, 30(12):2491-2498. ZHU Q Q, SHAO C Y, ZHANG Z, et al. Saponin biosurfactant-enhanced flushing for the removal of heavy metals from soils[J]. Acta Scientiae Circumstantiae, 2010, 30(12):2491-2498(in Chinese).
[5] GUO Y M, LIU Y G, LI H, et al. Remediation of Pb-contaminated port sediment by biosurfactant from Bacillus sp. G1[J]. Transactions of Nonferrous Metals Society of China, 2017(27):1385-1393. [6] JOSHI S, BHARUCHA C, DESAI A J. Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B[J]. Bioresource Technology, 2008, 99(11):4603-4608. [7] 马斌斌,马恒轶,李少君,等. 一株海洋柴油降解菌的分离筛选鉴定及其生物表面活性剂特性分析[J]. 海洋环境科学, 2017, 36(5):754-759. MA B B, MA H Y, LI S J, et al. Isolation, screening, and characterization of a diesel degrading darine bacteria and chemical characterization and properties of its biosurfactant[J]. Marine Environmental Science, 2017, 36(5):754-759(in Chinese).
[8] 杨卓,陈婧. 重金属污染土壤植物修复的EDTA调控效果[J]. 江苏农业科学,2017,45(2):258-261. YANG Z, CHEN J. The effects of ETDA in the contaminated soil on the research of phytoreme rehab[J]. Jiangsu Agricultural Sciences, 2017, 45(2):258-261(in Chinese).
[9] 石旻飞, 李晔, 袁江,等.螯合剂与表面活性剂强化东南景天修复Cd污染土壤的研究[J]. 安徽农业科学, 2015, 43(20):99-102. SHI M F, LI Y, YUAN J, et al. Study on chelator/surfactant-enhanced remediation of Cd-contaminated soil by Sedum alfredii hance[J]. Journal of Anhui Agricultural Sciences, 2015, 43(20):99-102(in Chinese).
[10] LIU J, ZHOU Q, WANG S. Evaluation of chemical enhancement on phytoremediation effect of Cd-contaminated soils with Calendula officinalis L[J]. International Journal of Phytoremediation, 2010, 12(5):503-515. [11] LIN Q, CHEN Y X, CHEN H M, et al. Effect of organic acids on soil chemical behavior of lead and cadmium and their toxicity to plants[J]. Chinese Journal of Applied Ecology, 2001, 12(4):619-622. [12] MUHEREI M A, JUNIN R, MERDHAH A B B. Adsorption of sodium dodecyl sulfate, Triton X100 and their mixtures to shale and sandstone:A comparative study[J]. Journal of Petroleum Science & Engineering, 2009, 67(3-4):149-154. [13] 刘志坚, 陈坚. 浙南海岸带盐碱地适生树种筛选试验[J]. 现代农业科技, 2016(9):157-158. LIU Z J, CHEN J. Tree species screening test for saline soil in coastal of southern Zhejiang Province[J]. Modern Agricultural Science and Technology, 2016 (9):157-158(in Chinese).
[14] 李少君, 邓欢欢, 马斌斌, 等. 无柄小叶榕对盐碱地Cd、Cu的吸收特性及修复潜力[J]. 环境科学学报, 2017, 37(12):4724-4733. LI S J, DENG H H, MA B B, et al. Cadmium, copper accumulation and remediation of Ficus concinna var.Subsessilis in saline-alkaline soil[J]. Acta Scientiae Circumstantiae, 2017, 37(12):4724-4733(in Chinese).
[15] 卢宁川, 冯效毅. 生物表面活性剂强化植物修复重金属污染土壤的可行性[J]. 环境科技, 2009, 22(4):18-21. LU N C, FENG X Y. Feasibility of applying biosurfactants to strengthen phytoremediation of heavy metal contaminated soils[J]. Environmental Science and Technology, 2009, 22(4):18-21(in Chinese).
[16] 石福贵, 郝秀珍, 周东美, 等. 鼠李糖脂与EDDS强化黑麦草修复重金属复合污染土壤[J]. 农业环境科学学报, 2009, 28(9):1818-1823. SHI F G, HAO X Z, ZHOU D M, et al. Remediation of the combined polluted soil by growing ryegrass enhanced by EDDS/rhamnolipid[J]. Journal of Agro-Environment Science, 2009, 28(9):1818-1823(in Chinese).
[17] 时进钢, 袁兴中, 曾光明, 等. 鼠李糖脂对沉积物中Cd和Pb的去除作用[J]. 环境化学, 2005, 24(1):55-58. SHI J G, YUAN X Z, ZENG G M, et al. Removal of heavy metals from sediment by rhamnolipid[J]. Environmental Chemistry, 2005, 24(1):55-58(in Chinese).
[18] 刘霞, 王建涛, 张萌, 等. 螯合剂和生物表面活性剂对Cu、Pb污染塿土的淋洗修复[J].环境科学, 2013, 34(4):1590-1597. LIU X, WANG J T, ZHANG M, et al. Remediation of Cu-Pb-Contaminated loess soil by leaching witn chelating agent and biosurfactant[J]. Environmental Science, 2013, 34(4):1590-1597(in Chinese).
[19] QIAN M, SHEN Z G, WEI L. Comparison of EDDS-and EDTA-Assisted uptake of heavy metals by elsholtzia haichowensis[J]. Agro-Environment Science, 2006, 25(1):113-118. [20] HONG K J, TOKUNAGA S, KAJIUCHI T. Evaluation of remediation process with plant derived biosurfactant for recovery of heavy mentals from contaminated soils[J]. Ghemosphere, 2002, 49(4):379-387. [21] HANG S, WANG K, KUO C, et al. Remediation of mental-contaminated soil by an integrated soil washing-electrolysis process[J]. Soil and Sediment Contamination:An International Journal, 2005, 14(6):559-569. [22] 曹福亮, 郁万文, 朱宇林. 银杏幼苗修复Pb和Cd重金属污染土壤特性[J]. 林业科学, 2012, 48(4):8-13. CAO F L, YU W W, ZHU Y L. Phytoremediation characteristics of the Pb and Cd contaminated soils by ginkgo seeding[J]. Scientia Silvae Sinicae, 2012, 48(4):8-13(in Chinese).
[23] 胡亚虎. 杨树对干旱区重金属污染农田土壤的修复研究[D]. 兰州:兰州大学, 2013. HU Y H. Research in the remediation of heavy metal contaminated farmland soil in arid area with populus[D].Lanzhou:Lanzhou University, 2013(in Chinese). [24] BAKER A J M, BROOKS R R, PEASE A J, et al. Studies on copper and cobalt tolerance in three closey related taxa with in the genus Science L. from Zaire[J]. Plantand Soil, 1983, 73(3):377-385.
计量
- 文章访问数: 1222
- HTML全文浏览数: 1222
- PDF下载数: 29
- 施引文献: 0