皮克林乳液法制备ZIF-8@聚苯乙烯中空微球及其吸附阿莫西林性能

余沛霖, 欧红香, 郑旭东, 张嘉陆, 丁建宁, 潘建明. 皮克林乳液法制备ZIF-8@聚苯乙烯中空微球及其吸附阿莫西林性能[J]. 环境化学, 2019, (7): 1682-1690. doi: 10.7524/j.issn.0254-6108.2018090603
引用本文: 余沛霖, 欧红香, 郑旭东, 张嘉陆, 丁建宁, 潘建明. 皮克林乳液法制备ZIF-8@聚苯乙烯中空微球及其吸附阿莫西林性能[J]. 环境化学, 2019, (7): 1682-1690. doi: 10.7524/j.issn.0254-6108.2018090603
YU Peilin, OU Hongxiang, ZHENG Xudong, ZHANG Jialu, DING Jianning, PAN Jianming. Preparation of ZIF-8@PS hollow microspheres by Pickering emulsion and adsorption performance on amoxicillin[J]. Environmental Chemistry, 2019, (7): 1682-1690. doi: 10.7524/j.issn.0254-6108.2018090603
Citation: YU Peilin, OU Hongxiang, ZHENG Xudong, ZHANG Jialu, DING Jianning, PAN Jianming. Preparation of ZIF-8@PS hollow microspheres by Pickering emulsion and adsorption performance on amoxicillin[J]. Environmental Chemistry, 2019, (7): 1682-1690. doi: 10.7524/j.issn.0254-6108.2018090603

皮克林乳液法制备ZIF-8@聚苯乙烯中空微球及其吸附阿莫西林性能

    通讯作者: 欧红香, E-mail: ouhongxiang@cczu.edu.cn
  • 基金项目:

    国家自然科学基金(21878026,21808018,51574046),江苏省博士后基金(1501024A)和江苏省研究生实践创新计划项目(SJCX17_0711)资助.

Preparation of ZIF-8@PS hollow microspheres by Pickering emulsion and adsorption performance on amoxicillin

    Corresponding author: OU Hongxiang, ouhongxiang@cczu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (21878026, 21808018, 51574046), the Jiangsu Province Postdoctoral Fund (1501024A) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX17_0711).
  • 摘要: 研究采用ZIF-8纳米粒子稳定皮克林乳液,制备了ZIF-8@聚苯乙烯中空微球(ZIF-8@PS),并用于溶液中阿莫西林(AMOX)的吸附去除.用傅里叶变换红外光谱(FI-TR)、X射线衍射分析(XRD)、扫描电镜(SEM)和氮气吸附脱附(BET)等方法研究了ZIF-8@PS中空微球的理化性质.通过静态吸附实验结合吸附等温线模型和吸附动力学模型等考察了ZIF-8@PS对AMOX的性能.结果表明,ZIF-8@PS具有良好的中空多孔结构,比表面积为380.4 m2·g-1.pH值为7.0、308 K时有最佳吸附效果.ZIF-8@PS对AMOX的吸附过程用Langmuir模型和准一级动力学模型能更好地拟合,对AMOX的吸附倾向为单层吸附.308 K时Langmuir模型计算的最大吸附量为0.6232 mmol·g-1.材料具有良好的再生能力,经3次吸附-解吸附后吸附量约损失11.15%.
  • 加载中
  • [1] CHRISTOU A, AGUERA A, BAYONA J M, et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment:The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes-A review[J]. Water Research, 2017, 123:448-467.
    [2] DE FRANCO M A E, DE CARVALHO C B, BONETTO M M, et al. Removal of amoxicillin from water by adsorption onto activated carbon in batch process and fixed bed column:Kinetics, isotherms, experimental design and breakthrough curves modelling[J]. Journal of Cleaner Production, 2017, 161:947-956.
    [3] HUANG C, LUO M T, CHEN X F, et al. Recent advances and industrial viewpoint for biological treatment of wastewaters by oleaginous microorganisms[J]. Bioresource Technology, 2017, 232:398-407.
    [4] SAHU O. Performance of copper compounds in chemical and electro oxidation treatment of sugar industry waste water:Batch reaction[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65:256-268.
    [5] JASIM S Y, SATHTHASIVAM J. Advanced oxidation processes to remove cyanotoxins in water[J]. Desalination, 2017, 406:83-87.
    [6] BAE I, OH K-H, YUN S-H, et al. Asymmetric silica composite polymer electrolyte membrane for water management of fuel cells[J]. Journal of Membrane Science, 2017, 542:52-59.
    [7] SAPIENZA A, VELTE A, GIRNIK I, et al. "Water-Silica Siogel" working pair for adsorption chillers:Adsorption equilibrium and dynamics[J]. Renewable Energy, 2017, 110:40-46.
    [8] FECHTNER M, KIENLE A. Efficient simulation and equilibrium theory for adsorption processes with implicit adsorption isotherms-Mass action equilibria[J]. Chemical Engineering Science, 2017, 171:471-480.
    [9] HU M L, SAFARIFARD V, DOUSTKHAH E, et al. Taking organic reactions over metal-organic frameworks as heterogeneous catalysis[J]. Microporous and Mesoporous Materials, 2018, 256:111-127
    [10] KUMAR P, VELLINGIRI K, KIM K-H, et al. Modern progress in metal-organic frameworks and their composites for diverse applications[J]. Microporous and Mesoporous Materials, 2017, 253:251-265.
    [11] ISANEJAD M, ARZANI M, MAHDAVI H R, et al. Novel amine modification of ZIF-8 for improving simultaneous removal of cationic dyes from aqueous solutions using supported liquid membrane[J]. Journal of Molecular Liquids, 2017, 225:800-809.
    [12] BHADRA B N, AHMED I, JHUNG S H. Remarkable adsorbent for phenol removal from fuel:Functionalized metal-organic framework[J]. Fuel, 2016, 174:43-48.
    [13] BASU S, BALAKRISHNAN M. Polyamide thin film composite membranes containing ZIF-8 for the separation of pharmaceutical compounds from aqueous streams[J]. Separation and Purification Technology, 2017, 179:118-125.
    [14] ABBASI Z, SHAMSAEI E, FANG X Y, et al. Simple fabrication of zeolitic imidazolate framework ZIF-8/polymer composite beads by phase inversion method for efficient oil sorption[J]. Journal of Colloid and Interface Science, 2017, 493:150-161.
    [15] HUO J, MARCELLO M, GARAI A, et al. MOF-polymer composite microcapsules derived from Pickering emulsions[J]. Advanced Materials, 2013, 25(19):2717-2722.
    [16] OU H X, CHEN Q H, PAN J M, et al. Selective removal of erythromycin by magnetic imprinted polymers synthesized from chitosan-stabilized Pickering emulsion[J]. Journal of Hazardous Materials, 2015, 289:28-37.
    [17] LI L, YAO J, XIAO P, et al. One-step fabrication of ZIF-8/polymer composite spheres by a phase inversion method for gas adsorption[J]. Colloid and Polymer Science, 2013, 291(11):2711-2717.
    [18] KHAN N A, JUNG B K, HASAN Z, et al. Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal-organic frameworks[J]. Journal of Hazardous Materials, 2015, 282:194-200.
    [19] UNGUREANU S, LAURENT G, DELEUZE H, et al. Syntheses and characterization of new organically grafted silica foams[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2010, 360(1-3):85-93.
    [20] GAO H P, PAN J M, HAN D L, et al. Facile synthesis of microcellular foam catalysts with adjustable hierarchical porous structure, acid-base strength and wettability for biomass energy conversion[J]. Journal of Materials Chemistry A, 2015, 3(25):13507-13518.
    [21] LI H, HU J, CAO Y, et al. Development and assessment of a functional activated fore-modified bio-hydrochar for amoxicillin removal[J]. Bioresource Technology, 2017.246:168-175.
    [22] SELLAOUI L, LIMA E C, DOTTO G L, et al. Adsorption of amoxicillin and paracetamol on modified activated carbons:Equilibrium and positional entropy studies[J]. Journal of Molecular Liquids, 2017, 234:375-381.
    [23] ZHANG Y, SHEN Y, CHEN Y, et al. Hierarchically carbonaceous catalyst with Brønsted-Lewis acid sites prepared through Pickering HIPEs templating for biomass energy conversation[J]. Chemical Engineering Journal, 2016, 294:222-235.
    [24] MISAK N Z. Adsorption isotherms in ion exchange reactions.Further treatments and remarks on the application of the Langmuir isotherm[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1995, 97:129-140.
    [25] CHAYID M A, AHMED M J. Amoxicillin adsorption on microwave prepared activated carbon from Arundo donax Linn:Isotherms, kinetics, and thermodynamics studies[J]. Journal of Environmental Chemical Engineering, 2015, 3:1592-1601.
    [26] HU D Y, WANG L J. Adsorption of amoxicillin onto quaternized cellulose from flax noil:Kinetic, equilibrium and thermodynamic study[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64:227-234.
    [27] CHAYID M A, AHMED M J. Amoxicillin adsorption on microwave prepared activated carbon from Arundo donax Linn:Isotherms, kinetics, and thermodynamics studies[J]. Journal of Environmental Chemical Engineering, 2015, 3(3):1592-1601.
  • 加载中
计量
  • 文章访问数:  1137
  • HTML全文浏览数:  1137
  • PDF下载数:  91
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-09-06
余沛霖, 欧红香, 郑旭东, 张嘉陆, 丁建宁, 潘建明. 皮克林乳液法制备ZIF-8@聚苯乙烯中空微球及其吸附阿莫西林性能[J]. 环境化学, 2019, (7): 1682-1690. doi: 10.7524/j.issn.0254-6108.2018090603
引用本文: 余沛霖, 欧红香, 郑旭东, 张嘉陆, 丁建宁, 潘建明. 皮克林乳液法制备ZIF-8@聚苯乙烯中空微球及其吸附阿莫西林性能[J]. 环境化学, 2019, (7): 1682-1690. doi: 10.7524/j.issn.0254-6108.2018090603
YU Peilin, OU Hongxiang, ZHENG Xudong, ZHANG Jialu, DING Jianning, PAN Jianming. Preparation of ZIF-8@PS hollow microspheres by Pickering emulsion and adsorption performance on amoxicillin[J]. Environmental Chemistry, 2019, (7): 1682-1690. doi: 10.7524/j.issn.0254-6108.2018090603
Citation: YU Peilin, OU Hongxiang, ZHENG Xudong, ZHANG Jialu, DING Jianning, PAN Jianming. Preparation of ZIF-8@PS hollow microspheres by Pickering emulsion and adsorption performance on amoxicillin[J]. Environmental Chemistry, 2019, (7): 1682-1690. doi: 10.7524/j.issn.0254-6108.2018090603

皮克林乳液法制备ZIF-8@聚苯乙烯中空微球及其吸附阿莫西林性能

    通讯作者: 欧红香, E-mail: ouhongxiang@cczu.edu.cn
  • 1. 常州大学环境与安全工程学院, 常州, 213164;
  • 2. 江苏大学机械工程学院, 镇江, 212013;
  • 3. 江苏大学化工学院, 镇江, 212013
基金项目:

国家自然科学基金(21878026,21808018,51574046),江苏省博士后基金(1501024A)和江苏省研究生实践创新计划项目(SJCX17_0711)资助.

摘要: 研究采用ZIF-8纳米粒子稳定皮克林乳液,制备了ZIF-8@聚苯乙烯中空微球(ZIF-8@PS),并用于溶液中阿莫西林(AMOX)的吸附去除.用傅里叶变换红外光谱(FI-TR)、X射线衍射分析(XRD)、扫描电镜(SEM)和氮气吸附脱附(BET)等方法研究了ZIF-8@PS中空微球的理化性质.通过静态吸附实验结合吸附等温线模型和吸附动力学模型等考察了ZIF-8@PS对AMOX的性能.结果表明,ZIF-8@PS具有良好的中空多孔结构,比表面积为380.4 m2·g-1.pH值为7.0、308 K时有最佳吸附效果.ZIF-8@PS对AMOX的吸附过程用Langmuir模型和准一级动力学模型能更好地拟合,对AMOX的吸附倾向为单层吸附.308 K时Langmuir模型计算的最大吸附量为0.6232 mmol·g-1.材料具有良好的再生能力,经3次吸附-解吸附后吸附量约损失11.15%.

English Abstract

参考文献 (27)

返回顶部

目录

/

返回文章
返回