功能宏基因组学在新型抗生素耐药基因研究中的应用进展

何荣, 原珂, 林里, 杨颖, 邹世春, 栾天罡, 陈保卫. 功能宏基因组学在新型抗生素耐药基因研究中的应用进展[J]. 环境化学, 2019, (7): 1548-1556. doi: 10.7524/j.issn.0254-6108.2018090702
引用本文: 何荣, 原珂, 林里, 杨颖, 邹世春, 栾天罡, 陈保卫. 功能宏基因组学在新型抗生素耐药基因研究中的应用进展[J]. 环境化学, 2019, (7): 1548-1556. doi: 10.7524/j.issn.0254-6108.2018090702
HE Rong, YUAN Ke, LIN Li, YANG Ying, ZOU Shichun, LUAN Tiangang, CHEN Baowei. Functional metagenomics: One of the most robust tools for discovering new antibiotics resistance genes[J]. Environmental Chemistry, 2019, (7): 1548-1556. doi: 10.7524/j.issn.0254-6108.2018090702
Citation: HE Rong, YUAN Ke, LIN Li, YANG Ying, ZOU Shichun, LUAN Tiangang, CHEN Baowei. Functional metagenomics: One of the most robust tools for discovering new antibiotics resistance genes[J]. Environmental Chemistry, 2019, (7): 1548-1556. doi: 10.7524/j.issn.0254-6108.2018090702

功能宏基因组学在新型抗生素耐药基因研究中的应用进展

    通讯作者: 陈保卫, E-mail: chenbw5@mail.sysu.edu.cn
  • 基金项目:

    国家自然科学基金(21777198)资助.

Functional metagenomics: One of the most robust tools for discovering new antibiotics resistance genes

    Corresponding author: CHEN Baowei, chenbw5@mail.sysu.edu.cn
  • Fund Project: Supported by National Natural Science Foundation of China (21777198).
  • 摘要: 抗生素耐药性是二十一世纪人类面对的最严峻的环境健康问题之一.抗生素耐药基因(Antibiotics resistance genes,ARGs)被认为是一类新型环境污染物.当前针对ARGs的主要研究方法有细菌分离和培养法、聚合酶链式反应(Polymerase Chain Reaction,PCR)法、和宏基因组法.然而,仅有功能宏基因组方法能发现新型的ARGs.功能宏基因组方法利用新一代测序技术的高通量的特性,结合分子生物学技术和功能筛选构建有关抗生素耐药性的基因库,通过生物信息学分析高效地发现新型ARGs.本文综述了近来利用功能宏基因组技术筛选新型ARGs的相关研究进展,总结了功能宏基因学相关的技术和方法的优势和限制,并展望了功能宏基因学方法进一步发展的方向.
  • 加载中
  • [1] 朱永官, 欧阳纬莹, 吴楠, 等. 抗生素耐药性的来源与控制对策[J]. 中国科学院院刊, 2015,30(4):509-516.

    ZHU Y G, OUYANG W Y, WU N, et al. Antibiotic resistance:sources and mitigation[J]. Bulletin of the Chinese Academy of Sciences, 2015, 30(4):509-516(in Chinese).

    [2] BOUKI C, VENIERI D, DIAMADOPOULOS E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants:A review[J]. Ecotoxicology and Environmental Safety, 2013,91:1-9.
    [3] XIONG W, SUN Y, ZHANG T, et al. Antibiotics, antibiotic resistance genes, and bacterial community composition in fresh water aquaculture environment in China[J]. Microbial Ecology, 2015,70(2):425-432.
    [4] BAYM M, LIEBERMAN T D, KELSIC E D, et al. Spatiotemporal microbial evolution on antibiotic landscapes[J]. Science, 2016,353(6304):1147-1151.
    [5] 郑璇, 郑育洪. 国内外超级细菌的研究进展及防控措施[J]. 中国畜牧兽医文摘, 2012,28(1):69-75.

    ZHENG X, ZHENG Y H. Research progresses and controlling measures of superbugs[J]. Chinese Abstracts of Animal Husbandry and Veterinary Medicine, 2012,28(1):69-75(in Chinese).

    [6] PRUDEN A, PEI R, STORTEBOOM H, et al. Antibiotic resistance genes as emerging contaminants:Studies in northern colorado[J]. Environmental Science & Technology, 2006,40(23):7445-7450.
    [7] COUGHLAN L M, COTTER P D, et al. Biotechnological applications of functional metagenomics in the food and pharmaceutical industries[J]. Frontiers in Microbiology, 2015,6:672.
    [8] VIKESLAND P J, PRUDEN A, ALVAREZ P J J, et al. Toward a comprehensive strategy to mitigate dissemination of environmental sources of antibiotic resistance[J]. Environmental Science & Technology, 2017,51(22):13061-13069.
    [9] PRUDEN A, ARABI M, STORTEBOOM H N. Correlation between upstream human activities and riverine antibiotic resistance genes[J]. Environmental Science & Technology, 2012,46(21):11541-11549.
    [10] CHENG G, HU Y, YIN Y, et al. Functional screening of antibiotic resistance genes from human gut microbiota reveals a novel gene fusion[J]. FEMS Microbiol Lett, 2012,336(1):11-16.
    [11] UFARTA L, POTOCKI-VERONESE G, LAVILLE A L. Discovery of new protein families and functions:New challenges in functional metagenomics for biotechnologies and microbial ecology[J]. Frontiers in Microbiology, 2015,6:563.
    [12] Dos Santos, KNUPP D F, ISTVAN P, et al. Functional metagenomics as a tool for identification of new antibiotic resistance genes from natural environments[J]. Microbial Ecology, 2017,73(2):479-491.
    [13] PEHRSSON E C, FORSBERG K J, GIBSON M K, et al. Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs[J]. Frontiers in Microbiology, 2013,4(145):145.
    [14] WANG W, XU S, REN Z, et al. Application of metagenomics in the human gut microbiome[J]. World Journal of Gastroenterology, 2015,21(3):803-814.
    [15] PENDERS J, STOBBERINGH E E, SAVELKOUL P H M, et al. The human microbiome as a reservoir of antimicrobial resistance[J]. Frontiers in Microbiology, 2013,4(1):87.
    [16] FOUHY F, OGILVIE L A, JONES B V, et al. Identification of aminoglycoside and β-lactam resistance genes from within an infant gut functional metagenomic Library[J]. Plos One, 2014,9(9):e108016
    [17] PHUONG H, THI P, NONAKA, et al. Detection of the sul1, sul2, and sul3 genes in sulfonamide-resistant bacteria from wastewater and shrimp ponds of north Vietnam[J]. Science of the Total Environment, 2008,405(1-3):377-384.
    [18] SHARMA V K, JOHNSON N, CIZMAS L, et al. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes[J]. Chemosphere, 2016,150:702-714.
    [19] GIGER W. Hydrophilic and amphiphilic water pollutants:using advanced analytical methods for classic and emerging contaminants[J]. Analytical and Bioanalytical Chemistry, 2009,393(1):37-44.
    [20] LAPARA T M, BURCH T R, MCNAMARA P J, et al. Tertiary-Treated municipal wastewater is a significant point source of antibiotic resistance genes into duluth-superior harbor[J]. Environmental Science & Technology, 2011,45(22):9543-9549.
    [21] LUO Y, MAO D, RYSZ M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environ Sci Technol, 2010,44(19):7220-7225.
    [22] AMOS G C A, ZHANG L, HAWKEY P M, et al. Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes[J]. Veterinary Microbiology, 2014,171(3-4):441-447.
    [23] HEUER H, SCHMITT H, SMALLA K. Antibiotic resistance gene spread due to manure application on agricultural fields[J]. Current Opinion in Microbiology, 2011,14(3):236-243
    [24] WICHMANN F, UDIKOVIC-KOLIC N, ANDREW S, et al. Diverse antibiotic resistance genes in dairy cow manure[J]. MBio, 2014,5(2):379-382.
    [25] LECLERCQ S O, WANG C, ZHU Y, et al. Diversity of the tetracycline mobilome within a chinese pig manure sample[J]. Applied and Environmental Microbiology, 2016,82(21):6454-6462.
    [26] LAKAY F M, BOTHA A, PRIOR B A. Comparative analysis of environmental DNA extraction and purification methods from different humic acid-rich soils[J]. Journal of Applied Microbiology, 2007,102(1):265-273.
    [27] BERTRAND H, POLY F, VAN V T, et al. High molecular weight DNA recovery from soils prerequisite for biotechnological metagenomic library construction[J]. Journal of Microbiological Methods, 2005,62(1):1-11.
    [28] UDIKOVIC-KOLIC N, WICHMANN F, BRODERICK N A, et al. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization[J]. Proceedings of the National Academy of Sciences, 2014,111(42):15202-15207.
    [29] SU J Q, WEI B, XU C Y, et al. Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China[J]. Environment International, 2014,65:9-15.
    [30] NASRIN S, GANJI S, KAKIRDE K S, et al. Chloramphenicol derivatives with antibacterial activity identified by functional metagenomics[J]. Journal of Natural Products, 2018,81(6):1321-1332.
    [31] SALIMRAJ R, ZHANG L, HINCHLIFFE P, et al. Structural and biochemical characterization of rm3, a subclass b3 metallo-β-lactamase identified from a functional metagenomic Study[J]. Antimicrobial agents and chemotherapy, 2016,60(10):5828-5840.
    [32] LAU C H, van ENGELEN K, GORDON S, et al. Novel antibiotic resistance determinants from agricultural soil exposed to antibiotics widely used in human medicine and animal farming[J]. Applied and Environmental Microbiology, 2017,83(16):e0989-17.
    [33] FORSBERG K J, PATEL S, GIBSON M K, et al. Bacterial phylogeny structures soil resistomes across habitats[J]. Nature, 2014,509(7502):612-616.
    [34] WANG S, GAO X, GAO Y, et al. Tetracycline resistance genes identified from distinct soil environments in China by functional metagenomics[J]. Front Microbiol, 2017,8:1-9.
    [35] FORSBERG K J, REYES A, WANG B, et al. The Shared antibiotic resistome of soil bacteria and human pathogens[J]. Science, 2012,337(6098):1107-1111.
    [36] MOORE A M, PATEL S, FORSBERG K J, et al. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes[J]. PLoS ONE, 2013,8(11):e78822.
    [37] HATOSY S M, MARTINY A C. The ocean as a global reservoir of antibiotic resistance genes[J]. Applied and Environmental Microbiology, 2015,81(21):7593-7599.
    [38] VERCAMMEN K, GARCIA-ARMISEN T, GOEDERS N, et al. Identification of a metagenomic gene cluster containing a new class A beta-lactamase and toxin-antitoxin systems[J]. Microbiologyopen, 2013,2(4):674-683.
    [39] YOU Y, HILPERT M, WARD M J. Identification of tet45, a tetracycline efflux pump, from a poultry-litter-exposed soil isolate and persistence of tet(45) in the soil[J]. Journal of Antimicrobial Chemotherapy, 2013,68(9):1962-1969.
    [40] VERSLUIS D, RODRIGUEZ DE EVGRAFOV M, SOMMER M O A, et al. Sponge microbiota are a reservoir of functional antibiotic resistance genes[J]. Frontiers in Microbiology, 2016,7:1848.
    [41] COURTOIS S, CAPPELLANO C M, BALL M, et al. Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products[J]. Applied and Environmental Microbiology, 2003,69(1):49-55.
    [42] COURTOIS S, FROSTEGARD A, GORANSSON P, et al. Quantification of bacterial subgroups in soil:comparison of DNA extracted directly from soil or from cells previously released by density gradient centrifugation[J]. Environ Microbiol, 2001,3(7):431-439.
    [43] LEVER M A, TORTI A, EICKENBUSCH P, et al. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types[J]. Frontiers in Microbiology, 2015,6(476):476.
    [44] LI H, ZHANG Y, ZHANG C G, et al. Effect of petroleum-containing wastewater irrigation on bacterial diversities and enzymatic activities in a paddy soil irrigation area[J]. Journal of Environment Quality, 2005,34(3):1073-1080.
    [45] ROBE P, NALIN R, CAPELLANO C, et al. Extraction of DNA from soil[J]. European Journal of Soil Biology, 2003,39(4):183-190.
    [46] ZHANG B, LI M, MA L, et al. A widely applicable protocol for DNA isolation from fecal samples[J]. Biochemical Genetics, 2006,44(11-12):494-503.
    [47] LI M, GONG J, COTTRILL M, et al. Evaluation of QIAamp® DNA Stool Mini Kit for ecological studies of gut microbiota[J]. Journal of Microbiological Methods, 2003,54(1):13-20.
    [48] LEE LE JIE, ABDULLAH M. Optimization of genomic DNA shearing by sonication for next-generation sequencing library preparation[J]. AsPac J. Mol. Biol. Biotechnol, 2014,22(3):200-208.
    [49] MCGARVEY K M, QUEITSCH K, FIELDS S. Wide variation in antibiotic resistance proteins identified by functional metagenomic screening of a soil DNA library[J]. Applied and Environmental Microbiology, 2012,78(6):1708-1714.
    [50] RIESENFELD C S, GOODMAN R M, HANDELSMAN J. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes[J]. Environmental Microbiology, 2004,6(9):981-989.
    [51] MULLANY P. Functional metagenomics for the investigation of antibiotic resistance[J]. Virulence, 2014,5(3):443-447.
    [52] BIVER S. Bacillus subtilis as a tool for screening soil metagenomic libraries for antimicrobial activities[J]. Journal of Microbiology and Biotechnology, 2013,23(6):850-855.
    [53] STREIT W R, SCHMITZ R A. Metagenomics-the key to the uncultured microbes Wolfgang R Streit 1,2 and Ruth A Schmitz1[J]. Current Opinion in Microbiology, 2004, 7:492-498.
    [54] CHUNG E J, LIM H K, KIM J C, et al. Forest soil metagenome gene cluster involved in antifungal activity expression in Escherichia coli[J]. Appl Environ Microbiol, 2008,74(3):723-730.
    [55] DEVIRGILⅡS C, ZINNO P, STIRPE M, et al. Functional screening of antibiotic resistance genes from a representative metagenomic library of food fermenting microbiota[J]. BioMed Research International, 2014,2014:1-9.
    [56] van ELSAS J D, COSTA R, JANSSON J, et al. The metagenomics of disease-suppressive soils-experiences from the METACONTROL project[J]. Trends in Biotechnology, 2008,26(11):591-601.
    [57] MIRETE S, MORGANTE V, EDUARDO GONZALEZ-PASTOR J. Functional metagenomics of extreme environments[J]. Current Opinion In Biotechnology, 2016,38:143-149.
    [58] MCMAHON M D, GUAN C, HANDELSMAN J, et al. Metagenomic analysis of streptomyces lividans reveals host-dependent functional expression[J]. Applied and Environmental Microbiology, 2012,78(10):3622-3629.
    [59] WILHARM G, LEPKA D, FABER F, et al. A simple and rapid method of bacterial transformation[J]. Journal of Microbiological Methods, 2010,80(2):215-216.
    [60] AUNE T E V, AACHMANN F L. Methodologies to increase the transformation efficiencies and the range of bacteria that can be transformed[J]. Applied Microbiology and Biotechnology, 2010,85(5):1301-1313.
    [61] WU N, MATAND K, KEBEDE B, et al. Enhancing DNA electrotransformation efficiency in Escherichia coli DH10B electrocompetent cells[J]. Electronic Journal of Biotechnology, 2010,13(5):11.
    [62] SARASWAT M, GRAND R S, PATRICK W M. Desalting DNA by drop dialysis increases library size upon transformation[J]. Bioscience, Biotechnology, and Biochemistry, 2013,77(2):402-404.
    [63] AHMAD I, RUBBAB T, DEEBA F, et al. Optimization of E. coli culture conditions for efficient DNA uptake by electroporation[J]. Turkish Journal of Biology, 2014,38:568-573.
    [64] 高立红, 史亚利, 厉文辉, 等. 抗生素环境行为及其环境效应研究进展[J]. 环境化学, 2013,39(9):1619-1633.

    GAO L H, SHI Y L, LI W H, et al. Research progresses on environmental behavior and effects of antibiotics[J]. Environmental Chemistry, 2013, 39(9):1619-1633(in Chinese).

    [65] LANGIN A, ALEXY R, KONIG A, et al. Deactivation and transformation products in biodegradability testing of β-lactams amoxicillin and piperacillin[J]. Chemosphere, 2009,75(3):347-354.
    [66] ANDREWS J M. Determination of minimum inhibitory concentrations[J]. Journal of Antimicrobial Chemotherapy, 2001,481:5-16.
    [67] 王兴春, 杨致荣, 王敏, 等. 高通量测序技术及其应用[J]. 中国生物工程杂志, 2012,32(1):109-114.

    WANG X C, YANG Z R, WANG M, et al. High-throughput sequencing technologies and their application[J]. China Biotechnology, 2012, 32(1):109-114(in Chinese).

    [68] 曹晨霞, 韩琬, 张和平. 第三代测序技术在微生物研究中的应用[J]. 微生物学通报, 2016,43(10):2269-2276.

    CAO C X, HAN W, ZHANG H P. Application of third generation sequencing technology to microbial research[J]. Microbiology, 2016, 43(10):2269-2276(in Chinese).

    [69] 张得芳, 马秋月, 尹佟明, 等. 第三代测序技术及其应用[J]. 中国生物工程杂志, 2013,33(5):125-131.

    ZHANG D F, MA Q Y, YI D M, et al. Third-generation sequencing technologies and their application[J]. China Biotechnology, 2013, 33(5):125-131(in Chinese).

    [70] LIAO Y, LIN S, LIN H. Completing bacterial genome assemblies:Strategy and performance comparisons[J]. Scientific Reports, 2015,5(1):8747.
    [71] ZERBINO D R, BIRNEY E. Velvet:Algorithms for de novo short read assembly using de Bruijn graphs[J]. Genome Research, 2008,18(5):821-829.
    [72] VAN GOETHEM M W, PIERNEEF R, BEZUIDT O K I, et al. A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils[J]. Microbiome, 2018,6(1):40.
    [73] FINN R D, CLEMENTS J, EDDY S R. HMMER web server:Interactive sequence similarity searching[J]. Nucleic Acids Research, 2011,39(suppl):W29-W37.
    [74] GIBSON M K, FORSBERG K J, DANTAS G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology[J]. 2015,9(1):207-216.
  • 加载中
计量
  • 文章访问数:  2416
  • HTML全文浏览数:  2416
  • PDF下载数:  90
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-09-07

功能宏基因组学在新型抗生素耐药基因研究中的应用进展

    通讯作者: 陈保卫, E-mail: chenbw5@mail.sysu.edu.cn
  • 1. 中山大学海洋科学学院, 广州, 510275;
  • 2. 中山大学生命科学院, 广州, 510275;
  • 3. 中山大学环境科学与工程学院, 广州, 510275
基金项目:

国家自然科学基金(21777198)资助.

摘要: 抗生素耐药性是二十一世纪人类面对的最严峻的环境健康问题之一.抗生素耐药基因(Antibiotics resistance genes,ARGs)被认为是一类新型环境污染物.当前针对ARGs的主要研究方法有细菌分离和培养法、聚合酶链式反应(Polymerase Chain Reaction,PCR)法、和宏基因组法.然而,仅有功能宏基因组方法能发现新型的ARGs.功能宏基因组方法利用新一代测序技术的高通量的特性,结合分子生物学技术和功能筛选构建有关抗生素耐药性的基因库,通过生物信息学分析高效地发现新型ARGs.本文综述了近来利用功能宏基因组技术筛选新型ARGs的相关研究进展,总结了功能宏基因学相关的技术和方法的优势和限制,并展望了功能宏基因学方法进一步发展的方向.

English Abstract

参考文献 (74)

目录

/

返回文章
返回