黄孢原毛平革菌对氯代蒽的生物降解及降解途径
Biodegradation of chlorinated anthracene by Phanerochaete chrysosporium and its degradation pathway
-
摘要: 氯代多环芳烃(chlorinated polycyclic aromatic hydrocarbons,Cl-PAHs)是多环芳烃的氯代衍生物,其毒性与母体相当甚至高于母体,在各种环境介质中广泛存在且难以降解,对生态环境和人类健康具有一定的潜在威胁.微生物降解是环境中去除有机物的主要途径之一,本文以白腐真菌的模式菌种-黄孢原毛平革菌(Phanerochaete chrysosporium,Pc)为代表,优化了Pc菌对氯代蒽的降解条件、探究了降解效果以及降解动力学,并分析了可能的降解途径.结果表明,Pc菌对氯代蒽有一定的降解能力.当液体培养基的初始pH值为4.5,Pc菌接种量约为每毫升1×105个时,在35℃,120 r·min-1的恒温摇床中培养6 d后,接入浓度为100 mg·L-1的底物能够达到较高的降解效率.在此条件下降解16 d后9-ClAnt和9,10-Cl2Ant的降解率分别达到了96.45%和92.83%.动力学分析表明,Pc菌降解氯代蒽的过程符合一级动力学方程.分析降解过程,检测到5种降解中间产物,结合生物催化反应的特点推测了氯代蒽可能的降解途径.Abstract: Chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) are chlorinated derivatives of PAHs, but the toxicity of them is equivalent or even higher than that of parent PAHs, Cl-PAHs are widely present in the environments and difficult to be degraded, posing a potential threat to the ecological environment and human health. Microbial degradation has been suggested as one of the best ways to remove organic pollutants from polluted environments. In this study, the optimized degradation conditions, biodegradation ability, the degradation kinetics of chlorinated anthracene(Cl-Ant) as well as the possible degradation pathway were investigated by the model species-Phanerochaete chrysosporium, The results showed a good effect of degrading Cl-Ant under the initial liquid medium at pH 4.5, 1×105 cells·mL-1 Phanerochaete chrysosporium at 35℃, 120 r·min-1 incubation for 6 days,after then 100 mg·L-1 substrate inoculated. After 16 days' experiments, the degradation efficiency of 9-ClAnt and 9,10-Cl2Ant reached to 96.45% and 92.83%, respectively. The kinetic analysis of Cl-Ant degradation follows the rule of the first-order kinetic equation. Five types of intermediate products were detected from the degradation system. Combining with the characteristics of biocatalytic reaction, the possible degradation pathways of Cl-Ant were proposed in this research.
-
-
[1] OHURA T, AMAGAI T, MAKINO M. Behavior and prediction of photochemical degradation of chlorinated polycyclic aromatic hydrocarbons in cyclohexane[J]. Chemosphere, 2008, 70(11):2110-2117. [2] HORⅡ Y, KHIM J S, HIGLEY E B, et al. Relative potencies of individual chlorinated and brominated polycyclic aromatic hydrocarbons for induction of aryl hydrocarbon receptor-mediated responses[J]. Environmental Science & Technology, 2009, 43(6):2159-2165. [3] HORⅡ Y, OK G, OHURA T, et al. Occurrence and profiles of chlorinated and brominated polycyclicaromatic hydrocarbons in waste incinerators[J]. Environmental Science & Technology, 2008, 42(6):1904-1909. [4] OHURA T, HORⅡ Y, YAMASHITA N. Spatial distribution and exposure risks of ambient chlorinated polycyclic aromatic hydrocarbons in Tokyo Bay area and network approach to source impacts[J]. Environmental Pollution, 2018, 232:367-374. [5] NISHIMURA C, HORⅡ Y, TANAKA S, et al. Occurrence, profiles, and toxic equivalents of chlorinated and brominated polycyclic aromatic hydrocarbons in E-waste open burning soils[J]. Environmental Pollution, 2017, 225:252-260. [6] WANG X L, KANG H Y, WU J F. Determination of chlorinated polycyclic aromatic hydrocarbons in water by solid-phase extraction coupled with gas chromatography and mass spectrometry[J]. Journal of Separation Science, 2016, 39(9):1742-1748. [7] OHURA T, SAKAKIBARA H, WATANABE I, et al. Spatial and vertical distributions of sedimentary halogenated polycyclic aromatic hydrocarbons in moderately polluted areas of Asia[J]. Environmental Pollution, 2015, 196:331-340. [8] MA J, HORⅡ Y, CHENG J P, et al. Chlorinated and parent polycyclic aromatic hydrocarbons in environmental samples from an electronic waste recycling facility and a chemical industrial complex in China[J]. Environmental Science & Technology, 2009, 43(3):643-649. [9] XU Y, YANG L L, ZHENG M H, et al. Chlorinated and brominated polycyclic aromatic hydrocarbons from metallurgical plants[J]. Environmental Science & Technology, 2018, 52(13):7334-7342. [10] WANG X L, WU J F, LIU B. Pressurized liquid extraction of chlorinated polycyclic aromatic hydrocarbons from soil samples using aqueous solutions[J]. Royal Society of Chemistry, 2016, 6(83):80017-80023. [11] OHURA T, KAMIYA Y, IKEMORI F. Local and seasonal variations in concentrations of chlorinated polycyclic aromatic hydrocarbons associated with particles in a Japanese megacity[J]. Journal of Hazardous Materials, 2016, 312:254-261. [12] MA J, CHEN Z Y, WU M H, et al. Airborne PM2.5/PM10-associated chlorinated polycyclic aromatic hydrocarbons and their parent compounds in a suburban area in Shanghai, China[J]. Environmental Science & Technology, 2013, 47(14):7615-7623. [13] 郑继三, 马静, Horii Yuichi,等. 固相萃取/气相色谱质谱法测定灰尘中的氯代多环芳烃[J]. 环境化学,2012, 31(7):1101-1107. ZHENG J S, MA J, YUICHI H, et al. Determination of chlorinated polycyclic aromatic hydrocarbons in dust by solid-phase extract (SPE) and gas chromatography-mass spectrometry[J]. Environment Chemistry, 2012, 31(7):1101-1107(in Chinese).
[14] HORⅡ Y,OHURA T, YAMASHITA N, et al. Chlorinated polycyclic aromatic hydrocarbons in sediments from industrial areas in Japan and the United States[J]. Archives of Environmental Contamination and Toxicology, 2009, 57(4):651-660. [15] DING C, NI H G, ZENG H. Human exposure to parent and halogenated polycyclic aromatic hydrocarbons via food consumption in Shenzhen, China[J]. Science of the Total Environment, 2013, 443(3):857-863. [16] DING C, NI H G, ZENG H. Parent and halogenated polycyclic aromatic hydrocarbons in rice and implications for human health in China[J]. Environmental Pollution, 2012, 168(5):80-86. [17] NI H G, GUO J Y. Parent and halogenated polycyclic aromatic hydrocarbons in seafood from south china and implications for human exposure[J]. Journal of Agricultural & Food Chemistry, 2013, 61(8):2013-2018. [18] OHURA T, MORITA M, MAKINO M, et al. Aryl hydrocarbon receptor-mediated effects of chlorinated polycyclic aromatic hydrocarbons[J]. Chemical Research in Toxicology, 2007, 20(9):1237-1241. [19] NIU J F, WANG L L, YANG Z F. QSPRs on photodegradation half-lives of atmospheric chlorinated polycyclic aromatic hydrocarbons associated with particulates[J]. Ecotoxicology & Environmental Safety, 2007, 66(2):272-277. [20] BUMPUS J A, MING T, WRIGHT D, et al. Oxidation of persistent environmental pollutants by a white rot fungus[J]. Science, 1985, 228(4706):1434-1436. [21] 李慧蓉, 罗丽娟, 罗光坤. 黄孢原毛平革菌对代表性染料的生物降解及降解途径的初探[J]. 环境化学, 2001, 20(4):378-385. LI H R, LUO L J, LUO G K. Probing into the biodegradation of model dyes and the degradation pathway by Phanerochaete chrysosporium[J]. Environment Chemistry, 2001, 20(4):378-385(in Chinese).
[22] FARACO V, PEZZELLA C, MIELE A, et al. Bio-remediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes[J]. Biodegradation, 2009, 20(2):209-220. [23] SENTHILKUMAR S, PERUMALSAMY M, PRABHU H J. Decolourization potential of white-rot fungus Phanerochaete chrysosporium, on synthetic dye bath effluent containing Amido black 10B[J]. Journal of Saudi Chemical Society, 2014, 18(6):845-853. [24] ANSARI Z, KARIMI A, SEDGHI S, et al. Glucose oxidase effect on treatment of textile effluent containing reactive azo dyes by Phanerochaete chrysosporium[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(7):1721-1726. [25] CHEN B L, DING J. Biosorption and biodegradation of phenanthrene and pyrene in sterilized and unsterilized soil slurry systems stimulated by Phanerochaete chrysosporium[J]. Journal of Hazardous Materials, 2012, 229-230(3):159-169. [26] WANG C P, YU L, ZHANG Z Y, et al. Tourmaline combined with Phanerochaete chrysosporium to remediate agricultural soil contaminated with PAHs and OCPs[J]. Journal of Hazardous Materials, 2014, 264(2):439-448. [27] GU H P, LOU J, WANG H Z, et al. Biodegradation, biosorption of phenanthrene and its trans-membrane transport by Massilia sp. WF1 and phanerochaete chrysosporium[J]. Frontiers in Microbiology, 2016, 7(38):1-12. [28] TAHA M, SHAHSAVARI E, ABURTO-MEDINA A, et al. Bioremediation of biosolids with Phanerochaete chrysosporium culture filtrates enhances the degradation of polycyclic aromatic hydrocarbons (PAHs)[J]. Applied Soil Ecology, 2018, 124:163-170. [29] DEMIR G, BARLAS H, BAYAT C. Degradation of some chlorinated organic materials by white rot fungus (Phanerochaete chrysosporium) in waters[J]. Fresenius Environmental Bulletin, 1998, 7(12A):927-933. [30] KAMEI I, KOGURA R, KONDO R. Metabolism of 4,4'-dichlorobiphenyl by white-rot fungi Phanerochaete chrysosporium and Phanerochaete sp MZ142[J]. Applied Microbiology & Biotechnology, 2006, 72(3):566-575. [31] 曾斌, 宁大亮, 王慧. 白腐真菌降解五氯酚的初步研究[J]. 环境化学, 2008, 27(2):181-185. ZENG B, NING D L, WANG H. Preliminary study on biodegradation of pentachlorophenol by white-rot fungus[J]. Environment Chemistry, 2008, 27(2):181-185(in Chinese).
[32] KASAI N, IKUSHIRO S, SHINKYO R, et al. Metabolism of mono-and dichloro-dibenzo-p-dioxins by Phanerochaete chrysosporium cytochromes P450[J]. Applied Microbiology &Biotechnology, 2010, 86(2):773-780. [33] DING J, CHEN B L, ZHU L Z. Biosorption and biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium in aqueous solution[J]. Science Bulletin, 2013, 58(6):613-621. [34] BHATTACHARYA S S, SYED K, SHANN J, et al. A novel P450-initiated biphasic process for sustainable biodegradation of benzo[a] pyrene in soil under nutrient-sufficient conditions by the white rot fungus Phanerochaete chrysosporium[J]. Journal of Hazardous Materials, 2013, 261(20):675-683. [35] 崔艳红, 张海棠,孟庆辉,等. 白腐真菌产木质素降解酶的条件及酶学性质的研究[J]. 吉林农业科学, 2008, 33(2):43-47. CUI Y H, ZHANG H T, MENG Q H, et al. Studies on production conditions and properties of ligninolytic enzymes from white rot fungi[J]. Journal of Jilin Agricultural Sciences, 2008, 33(2):43-47(in Chinese).
[36] 黄俊, 余刚, 成捷,等. 白腐真菌生物降解五氯苯酚的动力学研究[J]. 农业环境科学学报, 2004, 23(1):167-169. HUANG J, YU G, CHENG J, et al. Kinetics analysis for biodegradation process of pentachlorophenol in the presence of white rot fungus[J]. Journal of Agro-Environment Science, 2004, 23(1):167-169(in Chinese).
[37] CVANCAROVA M, KRESINOVA Z, FILIPOVA A, et al. Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products[J]. Chemosphere, 2012, 88(11):1317-1323. [38] 陶雪琴, 卢桂宁, 易筱筠,等. 菲高效降解菌的筛选及其降解中间产物分析[J]. 农业环境科学学报, 2006, 25(1):190-195. TAO X Q, LU G N, YI X Y, et al. Isolation of Phenanthrene-degrading microorganisms and analysis of metabolites of phenanthrene[J]. Journal of Agro-Environment Science, 2006, 25(1):190-195(in Chinese).
[39] YE J S, YIN H, QIANG J, et al. Biodegradation of anthracene by Aspergillus fumigatus[J]. Journal of Hazardous Materials, 2011, 185(1):174-181. [40] BALLACH H J, KUHN A, WITTIG R. Biodegradation of anthracene in the roots and growth substrate of poplar cuttings[J]. Environmental Science & Pollution Research International, 2003, 10(5):308-316. -

计量
- 文章访问数: 1184
- HTML全文浏览数: 1184
- PDF下载数: 95
- 施引文献: 0