黄孢原毛平革菌对氯代蒽的生物降解及降解途径

马涛, 原文婷, 彭英, 高占啟, 孙成, 何欢, 杨绍贵, 张利民. 黄孢原毛平革菌对氯代蒽的生物降解及降解途径[J]. 环境化学, 2019, (7): 1636-1644. doi: 10.7524/j.issn.0254-6108.2018091204
引用本文: 马涛, 原文婷, 彭英, 高占啟, 孙成, 何欢, 杨绍贵, 张利民. 黄孢原毛平革菌对氯代蒽的生物降解及降解途径[J]. 环境化学, 2019, (7): 1636-1644. doi: 10.7524/j.issn.0254-6108.2018091204
MA Tao, YUAN Wenting, PENG Ying, GAO Zhanqi, SUN Cheng, HE Huan, YANG Shaogui, ZHANG Limin. Biodegradation of chlorinated anthracene by Phanerochaete chrysosporium and its degradation pathway[J]. Environmental Chemistry, 2019, (7): 1636-1644. doi: 10.7524/j.issn.0254-6108.2018091204
Citation: MA Tao, YUAN Wenting, PENG Ying, GAO Zhanqi, SUN Cheng, HE Huan, YANG Shaogui, ZHANG Limin. Biodegradation of chlorinated anthracene by Phanerochaete chrysosporium and its degradation pathway[J]. Environmental Chemistry, 2019, (7): 1636-1644. doi: 10.7524/j.issn.0254-6108.2018091204

黄孢原毛平革菌对氯代蒽的生物降解及降解途径

    通讯作者: 何欢, E-mail: email:huanhe@njnu.edu.cn
  • 基金项目:

    国家自然科学基金(41671493)和水体污染控制与治理国家科技重大专项(2017ZX07202-004)资助.

Biodegradation of chlorinated anthracene by Phanerochaete chrysosporium and its degradation pathway

    Corresponding author: HE Huan, email:huanhe@njnu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (41671493) and the Major Science Technology Program for Water Pollution Control and Treatment(2017ZX07202-004).
  • 摘要: 氯代多环芳烃(chlorinated polycyclic aromatic hydrocarbons,Cl-PAHs)是多环芳烃的氯代衍生物,其毒性与母体相当甚至高于母体,在各种环境介质中广泛存在且难以降解,对生态环境和人类健康具有一定的潜在威胁.微生物降解是环境中去除有机物的主要途径之一,本文以白腐真菌的模式菌种-黄孢原毛平革菌(Phanerochaete chrysosporium,Pc)为代表,优化了Pc菌对氯代蒽的降解条件、探究了降解效果以及降解动力学,并分析了可能的降解途径.结果表明,Pc菌对氯代蒽有一定的降解能力.当液体培养基的初始pH值为4.5,Pc菌接种量约为每毫升1×105个时,在35℃,120 r·min-1的恒温摇床中培养6 d后,接入浓度为100 mg·L-1的底物能够达到较高的降解效率.在此条件下降解16 d后9-ClAnt和9,10-Cl2Ant的降解率分别达到了96.45%和92.83%.动力学分析表明,Pc菌降解氯代蒽的过程符合一级动力学方程.分析降解过程,检测到5种降解中间产物,结合生物催化反应的特点推测了氯代蒽可能的降解途径.
  • 加载中
  • [1] OHURA T, AMAGAI T, MAKINO M. Behavior and prediction of photochemical degradation of chlorinated polycyclic aromatic hydrocarbons in cyclohexane[J]. Chemosphere, 2008, 70(11):2110-2117.
    [2] HORⅡ Y, KHIM J S, HIGLEY E B, et al. Relative potencies of individual chlorinated and brominated polycyclic aromatic hydrocarbons for induction of aryl hydrocarbon receptor-mediated responses[J]. Environmental Science & Technology, 2009, 43(6):2159-2165.
    [3] HORⅡ Y, OK G, OHURA T, et al. Occurrence and profiles of chlorinated and brominated polycyclicaromatic hydrocarbons in waste incinerators[J]. Environmental Science & Technology, 2008, 42(6):1904-1909.
    [4] OHURA T, HORⅡ Y, YAMASHITA N. Spatial distribution and exposure risks of ambient chlorinated polycyclic aromatic hydrocarbons in Tokyo Bay area and network approach to source impacts[J]. Environmental Pollution, 2018, 232:367-374.
    [5] NISHIMURA C, HORⅡ Y, TANAKA S, et al. Occurrence, profiles, and toxic equivalents of chlorinated and brominated polycyclic aromatic hydrocarbons in E-waste open burning soils[J]. Environmental Pollution, 2017, 225:252-260.
    [6] WANG X L, KANG H Y, WU J F. Determination of chlorinated polycyclic aromatic hydrocarbons in water by solid-phase extraction coupled with gas chromatography and mass spectrometry[J]. Journal of Separation Science, 2016, 39(9):1742-1748.
    [7] OHURA T, SAKAKIBARA H, WATANABE I, et al. Spatial and vertical distributions of sedimentary halogenated polycyclic aromatic hydrocarbons in moderately polluted areas of Asia[J]. Environmental Pollution, 2015, 196:331-340.
    [8] MA J, HORⅡ Y, CHENG J P, et al. Chlorinated and parent polycyclic aromatic hydrocarbons in environmental samples from an electronic waste recycling facility and a chemical industrial complex in China[J]. Environmental Science & Technology, 2009, 43(3):643-649.
    [9] XU Y, YANG L L, ZHENG M H, et al. Chlorinated and brominated polycyclic aromatic hydrocarbons from metallurgical plants[J]. Environmental Science & Technology, 2018, 52(13):7334-7342.
    [10] WANG X L, WU J F, LIU B. Pressurized liquid extraction of chlorinated polycyclic aromatic hydrocarbons from soil samples using aqueous solutions[J]. Royal Society of Chemistry, 2016, 6(83):80017-80023.
    [11] OHURA T, KAMIYA Y, IKEMORI F. Local and seasonal variations in concentrations of chlorinated polycyclic aromatic hydrocarbons associated with particles in a Japanese megacity[J]. Journal of Hazardous Materials, 2016, 312:254-261.
    [12] MA J, CHEN Z Y, WU M H, et al. Airborne PM2.5/PM10-associated chlorinated polycyclic aromatic hydrocarbons and their parent compounds in a suburban area in Shanghai, China[J]. Environmental Science & Technology, 2013, 47(14):7615-7623.
    [13] 郑继三, 马静, Horii Yuichi,等. 固相萃取/气相色谱质谱法测定灰尘中的氯代多环芳烃[J]. 环境化学,2012, 31(7):1101-1107.

    ZHENG J S, MA J, YUICHI H, et al. Determination of chlorinated polycyclic aromatic hydrocarbons in dust by solid-phase extract (SPE) and gas chromatography-mass spectrometry[J]. Environment Chemistry, 2012, 31(7):1101-1107(in Chinese).

    [14] HORⅡ Y,OHURA T, YAMASHITA N, et al. Chlorinated polycyclic aromatic hydrocarbons in sediments from industrial areas in Japan and the United States[J]. Archives of Environmental Contamination and Toxicology, 2009, 57(4):651-660.
    [15] DING C, NI H G, ZENG H. Human exposure to parent and halogenated polycyclic aromatic hydrocarbons via food consumption in Shenzhen, China[J]. Science of the Total Environment, 2013, 443(3):857-863.
    [16] DING C, NI H G, ZENG H. Parent and halogenated polycyclic aromatic hydrocarbons in rice and implications for human health in China[J]. Environmental Pollution, 2012, 168(5):80-86.
    [17] NI H G, GUO J Y. Parent and halogenated polycyclic aromatic hydrocarbons in seafood from south china and implications for human exposure[J]. Journal of Agricultural & Food Chemistry, 2013, 61(8):2013-2018.
    [18] OHURA T, MORITA M, MAKINO M, et al. Aryl hydrocarbon receptor-mediated effects of chlorinated polycyclic aromatic hydrocarbons[J]. Chemical Research in Toxicology, 2007, 20(9):1237-1241.
    [19] NIU J F, WANG L L, YANG Z F. QSPRs on photodegradation half-lives of atmospheric chlorinated polycyclic aromatic hydrocarbons associated with particulates[J]. Ecotoxicology & Environmental Safety, 2007, 66(2):272-277.
    [20] BUMPUS J A, MING T, WRIGHT D, et al. Oxidation of persistent environmental pollutants by a white rot fungus[J]. Science, 1985, 228(4706):1434-1436.
    [21] 李慧蓉, 罗丽娟, 罗光坤. 黄孢原毛平革菌对代表性染料的生物降解及降解途径的初探[J]. 环境化学, 2001, 20(4):378-385.

    LI H R, LUO L J, LUO G K. Probing into the biodegradation of model dyes and the degradation pathway by Phanerochaete chrysosporium[J]. Environment Chemistry, 2001, 20(4):378-385(in Chinese).

    [22] FARACO V, PEZZELLA C, MIELE A, et al. Bio-remediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes[J]. Biodegradation, 2009, 20(2):209-220.
    [23] SENTHILKUMAR S, PERUMALSAMY M, PRABHU H J. Decolourization potential of white-rot fungus Phanerochaete chrysosporium, on synthetic dye bath effluent containing Amido black 10B[J]. Journal of Saudi Chemical Society, 2014, 18(6):845-853.
    [24] ANSARI Z, KARIMI A, SEDGHI S, et al. Glucose oxidase effect on treatment of textile effluent containing reactive azo dyes by Phanerochaete chrysosporium[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(7):1721-1726.
    [25] CHEN B L, DING J. Biosorption and biodegradation of phenanthrene and pyrene in sterilized and unsterilized soil slurry systems stimulated by Phanerochaete chrysosporium[J]. Journal of Hazardous Materials, 2012, 229-230(3):159-169.
    [26] WANG C P, YU L, ZHANG Z Y, et al. Tourmaline combined with Phanerochaete chrysosporium to remediate agricultural soil contaminated with PAHs and OCPs[J]. Journal of Hazardous Materials, 2014, 264(2):439-448.
    [27] GU H P, LOU J, WANG H Z, et al. Biodegradation, biosorption of phenanthrene and its trans-membrane transport by Massilia sp. WF1 and phanerochaete chrysosporium[J]. Frontiers in Microbiology, 2016, 7(38):1-12.
    [28] TAHA M, SHAHSAVARI E, ABURTO-MEDINA A, et al. Bioremediation of biosolids with Phanerochaete chrysosporium culture filtrates enhances the degradation of polycyclic aromatic hydrocarbons (PAHs)[J]. Applied Soil Ecology, 2018, 124:163-170.
    [29] DEMIR G, BARLAS H, BAYAT C. Degradation of some chlorinated organic materials by white rot fungus (Phanerochaete chrysosporium) in waters[J]. Fresenius Environmental Bulletin, 1998, 7(12A):927-933.
    [30] KAMEI I, KOGURA R, KONDO R. Metabolism of 4,4'-dichlorobiphenyl by white-rot fungi Phanerochaete chrysosporium and Phanerochaete sp MZ142[J]. Applied Microbiology & Biotechnology, 2006, 72(3):566-575.
    [31] 曾斌, 宁大亮, 王慧. 白腐真菌降解五氯酚的初步研究[J]. 环境化学, 2008, 27(2):181-185.

    ZENG B, NING D L, WANG H. Preliminary study on biodegradation of pentachlorophenol by white-rot fungus[J]. Environment Chemistry, 2008, 27(2):181-185(in Chinese).

    [32] KASAI N, IKUSHIRO S, SHINKYO R, et al. Metabolism of mono-and dichloro-dibenzo-p-dioxins by Phanerochaete chrysosporium cytochromes P450[J]. Applied Microbiology &Biotechnology, 2010, 86(2):773-780.
    [33] DING J, CHEN B L, ZHU L Z. Biosorption and biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium in aqueous solution[J]. Science Bulletin, 2013, 58(6):613-621.
    [34] BHATTACHARYA S S, SYED K, SHANN J, et al. A novel P450-initiated biphasic process for sustainable biodegradation of benzo[a] pyrene in soil under nutrient-sufficient conditions by the white rot fungus Phanerochaete chrysosporium[J]. Journal of Hazardous Materials, 2013, 261(20):675-683.
    [35] 崔艳红, 张海棠,孟庆辉,等. 白腐真菌产木质素降解酶的条件及酶学性质的研究[J]. 吉林农业科学, 2008, 33(2):43-47.

    CUI Y H, ZHANG H T, MENG Q H, et al. Studies on production conditions and properties of ligninolytic enzymes from white rot fungi[J]. Journal of Jilin Agricultural Sciences, 2008, 33(2):43-47(in Chinese).

    [36] 黄俊, 余刚, 成捷,等. 白腐真菌生物降解五氯苯酚的动力学研究[J]. 农业环境科学学报, 2004, 23(1):167-169.

    HUANG J, YU G, CHENG J, et al. Kinetics analysis for biodegradation process of pentachlorophenol in the presence of white rot fungus[J]. Journal of Agro-Environment Science, 2004, 23(1):167-169(in Chinese).

    [37] CVANCAROVA M, KRESINOVA Z, FILIPOVA A, et al. Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products[J]. Chemosphere, 2012, 88(11):1317-1323.
    [38] 陶雪琴, 卢桂宁, 易筱筠,等. 菲高效降解菌的筛选及其降解中间产物分析[J]. 农业环境科学学报, 2006, 25(1):190-195.

    TAO X Q, LU G N, YI X Y, et al. Isolation of Phenanthrene-degrading microorganisms and analysis of metabolites of phenanthrene[J]. Journal of Agro-Environment Science, 2006, 25(1):190-195(in Chinese).

    [39] YE J S, YIN H, QIANG J, et al. Biodegradation of anthracene by Aspergillus fumigatus[J]. Journal of Hazardous Materials, 2011, 185(1):174-181.
    [40] BALLACH H J, KUHN A, WITTIG R. Biodegradation of anthracene in the roots and growth substrate of poplar cuttings[J]. Environmental Science & Pollution Research International, 2003, 10(5):308-316.
  • 加载中
计量
  • 文章访问数:  573
  • HTML全文浏览数:  573
  • PDF下载数:  26
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-09-12

黄孢原毛平革菌对氯代蒽的生物降解及降解途径

    通讯作者: 何欢, E-mail: email:huanhe@njnu.edu.cn
  • 1. 南京师范大学环境学院, 南京, 210023;
  • 2. 南京大学环境学院, 污染控制与资源化研究国家重点实验室, 南京, 210023;
  • 3. 江苏省环境监测中心, 南京, 210036
基金项目:

国家自然科学基金(41671493)和水体污染控制与治理国家科技重大专项(2017ZX07202-004)资助.

摘要: 氯代多环芳烃(chlorinated polycyclic aromatic hydrocarbons,Cl-PAHs)是多环芳烃的氯代衍生物,其毒性与母体相当甚至高于母体,在各种环境介质中广泛存在且难以降解,对生态环境和人类健康具有一定的潜在威胁.微生物降解是环境中去除有机物的主要途径之一,本文以白腐真菌的模式菌种-黄孢原毛平革菌(Phanerochaete chrysosporium,Pc)为代表,优化了Pc菌对氯代蒽的降解条件、探究了降解效果以及降解动力学,并分析了可能的降解途径.结果表明,Pc菌对氯代蒽有一定的降解能力.当液体培养基的初始pH值为4.5,Pc菌接种量约为每毫升1×105个时,在35℃,120 r·min-1的恒温摇床中培养6 d后,接入浓度为100 mg·L-1的底物能够达到较高的降解效率.在此条件下降解16 d后9-ClAnt和9,10-Cl2Ant的降解率分别达到了96.45%和92.83%.动力学分析表明,Pc菌降解氯代蒽的过程符合一级动力学方程.分析降解过程,检测到5种降解中间产物,结合生物催化反应的特点推测了氯代蒽可能的降解途径.

English Abstract

参考文献 (40)

目录

/

返回文章
返回