两种不同抗生素在沉积物中吸附的影响因素与模拟研究

胡宇玉, 沈丹蕾, 罗帅, 宗晨露, 陈建秋, 程广焕, 于颖. 两种不同抗生素在沉积物中吸附的影响因素与模拟研究[J]. 环境化学, 2019, (7): 1570-1581. doi: 10.7524/j.issn.0254-6108.2018091603
引用本文: 胡宇玉, 沈丹蕾, 罗帅, 宗晨露, 陈建秋, 程广焕, 于颖. 两种不同抗生素在沉积物中吸附的影响因素与模拟研究[J]. 环境化学, 2019, (7): 1570-1581. doi: 10.7524/j.issn.0254-6108.2018091603
HU Yuyu, SHEN Danlei, LUO Shuai, ZONG Chenlu, CHEN Jianqiu, CHENG Guanghuan, YU Ying. Influencing factors and simulation of adsorption of two different antibiotics in sediments[J]. Environmental Chemistry, 2019, (7): 1570-1581. doi: 10.7524/j.issn.0254-6108.2018091603
Citation: HU Yuyu, SHEN Danlei, LUO Shuai, ZONG Chenlu, CHEN Jianqiu, CHENG Guanghuan, YU Ying. Influencing factors and simulation of adsorption of two different antibiotics in sediments[J]. Environmental Chemistry, 2019, (7): 1570-1581. doi: 10.7524/j.issn.0254-6108.2018091603

两种不同抗生素在沉积物中吸附的影响因素与模拟研究

    通讯作者: 程广焕, E-mail: chenggh@cpu.edu.cn 于颖, E-mail: yyinga@vip.sina.com
  • 基金项目:

    中国药科大学基本科研业务费专项项目-培育项目(3010110056),中国药科大学新教师科研启动项目(3010110058)和中国药科大学大学生创新项目(3150110022)资助.

Influencing factors and simulation of adsorption of two different antibiotics in sediments

    Corresponding authors: CHENG Guanghuan, chenggh@cpu.edu.cn ;  YU Ying, yyinga@vip.sina.com
  • Fund Project: Supported by Basic Research Business Expenses Special Project-Cultivation Project of China Pharmaceutical University (3010110056), New Teacher Research Initiative Project of China Pharmaceutical University (3010110058) and Student Innovation Project of China Pharmaceutical University (3150110022).
  • 摘要: 抗生素是环境中广泛存在的药物,其在水环境的迁移和分布主要受到沉积物吸附行为的影响.本文首先考察了高岭土、黑碳、腐殖酸、pH、Ca2+等5种影响因素对两种不同抗生素在沉积物上吸附强度的单因素影响,然后应用中心复合实验设计考察了其复合影响,并利用实验所得数据,分别拟合和验证了基于线性方程和BP神经网络的两种抗生素吸附模型,通过对比拟合和验证结果分别得到适用于两种抗生素的吸附模型.实验结果表明,pH和Ca2+对两种抗生素在沉积物上的吸附容量影响显著,而高岭土、黑碳和腐殖酸则影响较小.模型模拟结果表明,神经网络模型拟合程度和精度均优于线性方程模型;且交叉验证结果表明,利用不同组数据进行训练,神经网络模型拟合均取得了优于线性方程的拟合结果.因此,在所考察的因素和浓度范围内,神经网络模型较好地预测了沉积物中抗生素的吸附行为.
  • 加载中
  • [1] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782.
    [2] LI W H, SHI Y L, GAO L H, et al. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China[J]. Chemosphere, 2012, 89(11):1307-1315.
    [3] LI S, SHI W Z, LIU W, et al. A duodecennial national synthesis of antibiotics in China's major rivers and seas(2005-2016)[J]. Science of the Total Environment, 2018, 615:906-917.
    [4] 李彦文,莫测辉,赵娜,等.菜地土壤中磺胺类和四环素类抗生素污染特征研究[J].环境科学,2009,50(6):1762-1766.

    LI Y W, MO C H, ZHAO N, et al. Study on pollution characteristics of sulfonamides and tetracyclines in vegetable soil[J]. Environmental Science, 2009, 50(6):1762-1766(in Chinese).

    [5] WANG P, ZHANG D, ZHANG H, et al. Impact of concentration and species of sulfamethoxazole and ofloxacin on their adsorption kinetics on sediments[J]. Chemosphere, 2017, 175:123-129.
    [6] SRINIVASAN P, SARMAH A K, MANLEY-HARRIS M. Co-contaminants and factors affecting the sorption behavior of two sulfonamides in pasture soils[J]. Environmental Pollution, 2013, 180:165-172.
    [7] ZHANG Z Y, SUN K, GAO B, et al. Adsorption of tetracycline on soil and sediment:Effects of pH and the presence of Cu(Ⅱ)[J]. Journal of Hazardous Materials, 2011, 190(1-3):856-862.
    [8] LERTPAITOONPAN W, ONG S. Effect of organic carbon and pH on soil sorption of sulfamethazine[J]. Chemosphere, 2009, 76(4):558-564.
    [9] ZHOU J, BROODBANK N. Sediment-water interactions of pharmaceutical residues in the river environment[J]. Water Research, 2014, 48:61-70.
    [10] AL-KHAZRAJY O S A, BOXALL A B A. Impacts of compound properties and sediment characteristics on the sorption behaviour of pharmaceuticals in aquatic systems[J]. Journal of Hazardous Materials, 2016, 317:198-209.
    [11] 张琛,刘建林,胡艳,等.BP神经网络模型在表层沉积物及其非残渣态组分吸附双酚A研究中的应用[J].地理科学,2010,30(3):435-440.

    ZHANG T, LIU J L, HU Y, et al. Application of BP neural network model in the study of adsorption of bisphenol A in surface sediments and its non-residual components[J]. Geographic Science, 2010, 30(3):435-440(in Chinese).

    [12] BARRON L, HAVEL J, PURCELL M, et al. Predicting sorption of pharmaceuticals and personal care products onto soil and digested sludge using artificial neural networks[J]. Analyst, 2009, 134(4):663-670.
    [13] 余绵梓,袁啸,李适宇,等.咖啡因在河流沉积物中吸附的影响因素及模拟研究[J].环境科学学报,2017,38(2):560-569.

    YU J Z, YUAN X, LI S Y, et al. Influencing factors and simulation of caffeine adsorption in river sediments[J]. Acta Scientiae Circumstantiae, 2017, 38(2):560-569(in Chinese).

    [14] MELANIE K, GABRIEL S, FENG X, et al. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials[J]. Water Research, 2017, 124:673-692.
    [15] 邓丽萍,纪靓靓,白朝暾.二氧化锰改性碳纳米管对四环素和泰乐菌素的吸附[J].农业环境科学学报,2015,34(4):781-786.

    DENG L P, JI L L, BAI C D. Adsorption of tetracycline and tylosin by manganese dioxide modified carbon nanotubes[J]. Journal of Agricultural Environmental Science, 2015, 34(4):781-786(in Chinese).

    [16] YI X, BAYEN S, KELLY B C, et al. Improved detection of multiple environmental antibiotics through an optimized sample extraction strategy in liquid chromatography-mass spectrometry analysis[J]. Analytical and Bioanalytical Chemistry, 2015, 407(30):9071-9083.
    [17] OCAMPO-PÉREZ R, LEYVA-RAMOS R, RIVERA-UTRILLA J, et al. Modeling adsorption rate of tetracyclines on activated carbons from aqueous phase[J]. Chemical Engineering Research & Design, 2015, 104:579-588.
    [18] 李燕.活性炭、高岭土对盐酸四环素的吸附行为研究[J].内蒙古煤炭经济,2018,3:133-135. LI Y. Adsorption behavior of activated carbon and kaolin on tetracycline hydrochloride[J]. Inner Mongolia Coal Economy, 2018

    , 3:133-135(in Chinese).

    [19] 孔露露,周启星.新制备生物炭的特性表征及其对石油烃污染土壤的吸附效果[J].环境工程学报,2015,9(5):2462-2468.

    KONG L L, ZHOU Q X. Characterization of new-prepared biochars and their adsorption effectiveness on petroleum hydrocarbon contaminated soil[J]. Chinese Journal of Environmental Engineering, 2015, 9(5):2462-2468(in Chinese).

    [20] KONG L L, GAO Y Y, ZHOU Q X, et al. Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy[J]. Journal of Hazardous Materials, 2018, 343(5):276-284.
    [21] 李蕊宁,王兆炜,郭家磊,等.酸碱改性生物炭对水中磺胺噻唑的吸附性能研究[J].环境科学学报,2017,37(11):4119-4128.

    LI R N, WANG Z W, GUO J L, et al. Study on adsorption performance of acid-base modified biochar for sulfathiazole in water[J]. Acta Scientiae Circumstantiae, 2017, 37(11):4119-4128(in Chinese).

    [22] LEHMANN J, JOSEPH S. Biochar for environmental management:science and technology[M]. London:Earthscan Publications, 2009.
    [23] 王玉环,林青,徐绍辉.Cu2+存在下腐殖酸对磺胺嘧啶吸附解吸的影响[J].环境科学研究,2018,31(10):1795-1802.

    WANG Y H, LIN Q, XU S H. Effect of humic acid on adsorption and desorption of sulfadiazine in the presence of Cu2+[J]. Research of Environmental Sciences, 2018, 31(10):1795-1802(in Chinese).

    [24] 汪华,方程冉,王群,等.腐殖酸对生物碳吸附四环素的影响[J].环境污染与防治,2018,40(4):423-428.

    WANG H, FANG C R, WANG Q, et al. Effect of humic acid on adsorption of tetracycline by biochar[J]. Environmental Pollution & Control, 2018, 40(4):423-428(in Chinese).

    [25] XU X R, LI X Y. Sorption and desorption of antibiotic tetracycline on marine sediments[J]. Chemosphere, 2010, 78(4):430-436.
    [26] PILS J V, LAIRD D A. Sorption of tetracycline and chlortetracycline on K-and Ca-saturated soil clays, humic substances, and clay-humic complexes[J]. Environmental Science & Technology, 2007, 41(6):1928-1933.
    [27] MANAGAKI S, MURATA A, TAKADA H. Distribution of macrolides sulfonamides and trimethoprim in tropical waters:Ubiquitous occurrence of veterinary antibiotics in the Mekong Delta[J]. Environmental Science & Technology, 2007, 41(23):8004-8010.
    [28] 毛真,吴敏,张迪,等.磺胺甲恶唑在土壤上的吸附及其与Ca2+、Mg2+、Zn2+的共吸附[J].环境化学,2013,32(4):640-645.

    MAO Z, WU M, ZHANG D, et al. Adsorption of sulfamethoxazole on soil and co-adsorption with Ca2+, Mg2+ and Zn2+[J]. Environmental Chemistry, 2013, 32(4):640-645(in Chinese).

    [29] ZHANG D, PAN B, WU M, et al. Adsorption of sulfamethoxazole on functionalized carbon nanotubes as affected by cations and anions[J]. Environmental Pollution, 2011, 159(10):2616-2621.
    [30] EUGENIA P M, MARCELO J A, GISELA R P, et al. Influence of Ca2+ on tetracycline adsorption on montmorillonite[J]. Journal of Colloid and Interface Science, 2012, 368:420-426.
    [31] 李鱼,王志增,王檬,等.多种环境因子交互作用对沉积物吸附阿特拉津的影响[J].吉林大学学报,2013,3(2):334-339.

    LI Y, WANG Z Z, WANG M, et al. Effects of interactions of various environmental factors on the adsorption of atrazine on sediments[J]. Journal of Jilin University, 2013, 3(2):334-339(in Chinese).

    [32] YANG Q Q, LI X G, CHEN G C, et al. Effect of humic acid on the sulfamethazine adsorption by functionalized multi-walled carbon nanotubes in aqueous solution:Mechanistic study[J]. The Royal Society of Chemistry, 2016, 6:15184-15191.
    [33] ZHAO Y P, GENG J J, WANG X R, et al. Adsorption of tetracycline onto goethite in the presence of metal cations and humic substances[J]. Journal of Colloid and Interface Science, 2011, 361(1):247-251.
    [34] JI T L, LU S F, TANG M M, et al. Application of BP neural network model in fracturing productivity prediction of Fuyu Tight oil reservoir in Jilin Oilfield[J]. Acta Geologica Sinica, 2015, 89(1):154-155.
    [35] 王晓光.自适应BP神经网络在横波速度预测的应用[J].岩性油气管,2015,25(5):86-88.

    WANG X G. Application of adaptive BP neural network in shear wave velocity prediction[J]. Lithologic Reservoirs, 2015, 25(5):86-88(in Chinese).

  • 加载中
计量
  • 文章访问数:  1131
  • HTML全文浏览数:  1131
  • PDF下载数:  37
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-09-16

两种不同抗生素在沉积物中吸附的影响因素与模拟研究

基金项目:

中国药科大学基本科研业务费专项项目-培育项目(3010110056),中国药科大学新教师科研启动项目(3010110058)和中国药科大学大学生创新项目(3150110022)资助.

摘要: 抗生素是环境中广泛存在的药物,其在水环境的迁移和分布主要受到沉积物吸附行为的影响.本文首先考察了高岭土、黑碳、腐殖酸、pH、Ca2+等5种影响因素对两种不同抗生素在沉积物上吸附强度的单因素影响,然后应用中心复合实验设计考察了其复合影响,并利用实验所得数据,分别拟合和验证了基于线性方程和BP神经网络的两种抗生素吸附模型,通过对比拟合和验证结果分别得到适用于两种抗生素的吸附模型.实验结果表明,pH和Ca2+对两种抗生素在沉积物上的吸附容量影响显著,而高岭土、黑碳和腐殖酸则影响较小.模型模拟结果表明,神经网络模型拟合程度和精度均优于线性方程模型;且交叉验证结果表明,利用不同组数据进行训练,神经网络模型拟合均取得了优于线性方程的拟合结果.因此,在所考察的因素和浓度范围内,神经网络模型较好地预测了沉积物中抗生素的吸附行为.

English Abstract

参考文献 (35)

目录

/

返回文章
返回