不同长度秸秆还田对土壤汞甲基化与水稻植株甲基汞富集的影响

张定熙, 孙涛, 王永敏, 李广智, 董玉丹, 唐振亚, 尹德良, 王定勇. 不同长度秸秆还田对土壤汞甲基化与水稻植株甲基汞富集的影响[J]. 环境化学, 2019, (7): 1488-1496. doi: 10.7524/j.issn.0254-6108.2018092501
引用本文: 张定熙, 孙涛, 王永敏, 李广智, 董玉丹, 唐振亚, 尹德良, 王定勇. 不同长度秸秆还田对土壤汞甲基化与水稻植株甲基汞富集的影响[J]. 环境化学, 2019, (7): 1488-1496. doi: 10.7524/j.issn.0254-6108.2018092501
ZHANG Dingxi, SUN Tao, WANG Yongmin, LI Guangzhi, DONG Yudan, TANG Zhenya, YIN Deliang, WANG Dingyong. Effect of straw returning with different lengths on mercury methylation in paddy soil and methylmercury accumulation in rice plants[J]. Environmental Chemistry, 2019, (7): 1488-1496. doi: 10.7524/j.issn.0254-6108.2018092501
Citation: ZHANG Dingxi, SUN Tao, WANG Yongmin, LI Guangzhi, DONG Yudan, TANG Zhenya, YIN Deliang, WANG Dingyong. Effect of straw returning with different lengths on mercury methylation in paddy soil and methylmercury accumulation in rice plants[J]. Environmental Chemistry, 2019, (7): 1488-1496. doi: 10.7524/j.issn.0254-6108.2018092501

不同长度秸秆还田对土壤汞甲基化与水稻植株甲基汞富集的影响

    通讯作者: 王永敏, E-mail: wangym540@swu.edu.cn
  • 基金项目:

    国家自然科学基金(41671469,41603103),中央高校基本科研业务费专项基金项目(XDJK2017B035,XDJK2017D202)和西南大学国家级大学生创新创业训练计划项目(201710635061)资助.

Effect of straw returning with different lengths on mercury methylation in paddy soil and methylmercury accumulation in rice plants

    Corresponding author: WANG Yongmin, wangym540@swu.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China (41671469,41603103), the Fundamental Research Funds for the Central Universities (XDJK2017B035, XDJK2017D202) and the National Undergraduate Training Program for Innovation and Entrepreneurship of Southwest University(201710635061).
  • 摘要: 为降低秸秆还田引起稻田系统甲基汞(MeHg)升高的风险,采用盆栽试验,研究了添加不同长度水稻秸秆(5 cm、2 cm、粉末)条件下,在水稻整个生长期内土壤汞的甲基化以及水稻植株各组织中MeHg的含量变化特征.结果表明,添加秸秆能显著促进稻田土壤汞的甲基化,并能提升稻米MeHg的富集.不同长度秸秆对土壤MeHg净增长的影响时间不同,较长秸秆能长时间内对土壤汞的甲基化产生促进作用,在水稻生长后期土壤MeHg含量持续偏高,致使晚熟期稻米中MeHg质量浓度偏高;粉碎的秸秆在土壤中能快速降解,尽管在短时间内能引起土壤MeHg含量升高,但在水稻生长后期土壤MeHg含量明显下降,完熟期稻米中MeHg含量也远低于其他两种处理方式.因此,秸秆进行粉碎处理后再还田有利于降低稻米的MeHg富集风险.
  • 加载中
  • [1] LI P, FENG X, SHANG L, et al. Mercury pollution from artisanal mercury mining in Tongren, Guizhou, China[J]. Applied Geochemistry, 2008, 23:2055-2064.
    [2] GTHENBERG S E, FENG X, DONG B, et al. Characterization of mercury species in brown and white rice (Oryza sativa L.) grown in water-saving paddies[J]. Environmental Pollution, 2011, 159(5):1283-1289.
    [3] MENG B, FENG X, QIU G, et al. Inorganic mercury accumulation in rice (Oryza sativa L.)[J]. Environmental Toxicology & Chemistry, 2012, 31:2093-2098.
    [4] 朱金山,高润霞,王定勇, 等.稻田水体中汞的非生物甲基化研究[J]. 环境化学,2017,36(9):1997-2004.

    ZHU J S, GAO R X, XU, et al. The progress in research on mechanism of microbial mercury methylation and de-methylation[J]. Environmental Chemistry, 2017,36(9):1997-2004(in Chinese).

    [5] ZHANG H, FENG X, LARSSEN T, et al. Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) Grain[J]. Environmental Science & Technology, 2010, 44(12):4499-4504.
    [6] QIU G, FENG X, LI P, et al. Methylmercury accumulation in rice (Oryza sativa L.) grown at abandoned mercury mines in Guizhou, China[J]. Journal of Agricultural & Food Chemistry, 2008, 56(7):2465-2468.
    [7] MENG B, FENG X, QIU G, et al. Localization and speciation of mercury in brown rice with implications for Pan-Asian public health[J]. Environmental Science & Technology, 2014, 48(14):7974-7981.
    [8] 谷春豪, 许怀凤, 仇广乐.汞的微生物甲基化与去甲基化机理研究进展[J]. 环境化学,2013,32(6):926-936.

    GU C H, XU H F, QIU G L. The progress in research on mechanism of microbial mercury methylation and de-methylation[J]. Environmental Chemistry, 2013, 32(6):926-936(in Chinese).

    [9] ZHU H, ZHONG H, EVANS D, et al. Effects of rice residue incorporation on the speciation, potential bioavailability and risk of mercury in a contaminated paddy soil[J]. Journal of Hazardous Materials, 2015, 293:64-71.
    [10] ZHU H, ZHONG H, WU J. Incorporating rice residues into paddy soils affects methylmercury accumulation in rice[J]. Chemosphere, 2016, 152:259-264.
    [11] 曹湛波, 王磊, 李凡, 等.土壤呼吸与土壤有机碳对不同秸秆还田的响应及其机制[J]. 环境科学, 2016, 37(5):1908-1914.

    CAO Z B,WANG L, LI F, et al. Response of soil respiration and organic carbon to returning of different agricultural straws and its mechanism[J].Environmental Science. 2016, 37(5):1908-1914(in Chinese).

    [12] ULLRICH S M, TANTON T W, ABDRASHITOVA S A. Mercury in the aquatic environment:a review of factors affecting methylation[J]. C R C Critical Reviews in Environmental Control, 2001, 31:241-293.
    [13] DEB S K, SHUKLA M K. A review of dissolved organic matter transport processes affecting soil and environmental quality[J]. Journal of Environmental & Analytical Toxicology, 2011, 1(2):1-11.
    [14] MENG B, FENG X, QIU G, et al. The process of methylmercury accumulation in rice (Oryza sativa L.)[J]. Environmental Science & Technology, 2011, 45(7):2711-2717.
    [15] WANG X, YE Z, LI B, et al. Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg[J]. Environmental Science & Technology, 2014, 48(3):1878-1885.
    [16] 江永红, 宇振荣, 马永良.秸秆还田对农田生态系统及作物生长的影响[J]. 土壤通报, 2001, 32(5):209-213.

    JIANG Y H, NING Z R, MA Y L. Effect of straw returning on farmland ecosystem and crop growth[J]. Chinese Journal of Soil Science, 2001,32(5):209-213(in Chinese).

    [17] 杨滨娟, 黄国勤, 钱海燕. 秸秆还田配施化肥对土壤温度、根际微生物及酶活性的影响[J]. 土壤学报, 2014,51(1):150-157.

    YANG B J, HUANG G Q, QIAN H Y. Effects of straw incorporation plus chemical fertilizer on soil temprature,root micro-oranisms and enzyme activities[J].Acta Pedologica Sinica, 2014, 51(1):150-157(in Chinese).

    [18] GRAYDON J A, ST LOUIS V L, LINDBERG S E, et al. Investigation of mercury exchange between forest canopy vegetation and the atmosphere using a new dynamic chamber[J]. Environmental Science & Technology, 2006, 40(15):4680-4688.
    [19] 匡恩俊, 迟凤琴, 宿庆瑞, 等. 不同长度作物秸秆腐解规律的研究[C]. 中国植物营养与肥料学会2012年学术年会, 2012. KUANG E J, CHI F Q, SU Q R, et al. Decomposition Regularities of Crop Straws under Different Length[C].China Society of Plant Nutrition and Fertilizer 2012 Annual Conference,2012(in Chinese).
    [20] EPA U. Method 1630, Methyl mercury in water by distillation, aqueous ethylation, purge and trap, and CVAFS[J]. US Environmental Protection Agency, Washington, DC, 2001.
    [21] GU B, BIAN Y, Miller C L, et al. Mercury reduction and complexation by natural organic matter in anoxic environments[J]. ProcNatl Acad Sci U S A, 2011, 108(4):1479-1483.
    [22] 孙涛, 马明, 王永敏, 等. 西南地区典型森林水库土壤和沉积物汞的迁移转化特征[J]. 环境科学,2018,39(4):1880-1887.

    SUN T, MA M, WANG Y M, et al. Migration and transformation of mercury in unsubmerged soil and sediment at one typical forest reservoir in Southwest China[J]. Environmental Science, 2018, 39(4):1880-1887(in Chinese).

    [23] REGNELL O, ELERT M, HÖGLUND L O, et al. Linking cellulose fiber sediment methyl mercury levels to organic matter decay and major element composition[J]. Ambio, 2014, 43(7):878-890.
    [24] YIN D, WANG Y, JIANG T, et al. Methylmercury production in soil in the water-level-fluctuating zone of the Three Gorges Reservoir, China:The key role of low-molecular-weight organic acids[J]. Environmental Pollution, 2017, 235:186-189.
    [25] 赵蒙蒙, 姜曼, 周祚万. 几种农作物秸秆的成分分析[J]. 材料导报, 2011,25(16):122-125.

    ZHAO M M, JANG M, ZHOU Z W. The components analysis of several kinds of agricultural residues[J]. Materials Review. 2011,25(16):122-125(in Chinese).

    [26] 葛选良, 于洋, 钱春荣. 还田作物秸秆腐解特性及相关影响因素的研究进展[J]. 农学学报,2017, 7(7):17-21.

    GE X L, YU Y, QIAN C R. Returning crop straw:A review of decomposing features and influencing factors[J]. Journal of Agriculture, 2017, 7(7):17-21(in Chinese).

    [27] 颜丽, 宋杨, 贺靖, 等. 玉米秸秆还田时间和还田方式对土壤肥力和作物产量的影响[J]. 土壤通报, 2004, 35(2):143-148.

    YAN L, SONG Y, HE J, et al. Effects of maize stems returning back to the field on the yield of plants an soil fertility[J]. Chinese Journal of Soil Science, 2004, 35(2):143-148(in Chinese).

    [28] 郑立臣, 解宏图, 张威, 等. 秸秆不同还田方式对土壤中溶解性有机碳的影响[J]. 生态环境学报, 2006, 15(1):80-83.

    ZHENG L, XIE H, ZHANG W, et al. Effects of different ways of returning straw to the soils on soluble organic carbon[J]. Ecology & Environment, 2006, 15(1):80-83(in Chinese).

    [29] 张静, 温晓霞, 廖允成, 等. 不同玉米秸秆还田量对土壤肥力及冬小麦产量的影响[J]. 植物营养与肥料学报, 2010, 16(3):612-619.

    ZHANG J, WEN X X, LIAO Y C, et al. Effects of different amounts of maize straw returning on soil fertility and yield of winter wheat[J]. Plant Nutrition & Fertilizer Science, 2010, 16(3):612-619(in Chinese).

    [30] HENRIKSEN T M, BRELAND T A. Carbon mineralization, fungal and bacterial growth, and enzyme activities as affected by contact between crop residues and soil[J]. Biology & Fertility of Soils, 2002, 35(1):41-48.
    [31] GILMOUR C C, HENRY E A. Mercury methylation in aquatic systems affected by acid deposition[J]. Environmental Pollution, 1991, 71:131-169.
    [32] ZHAO L, ANDERSON C W N, QIU G, et al. Mercury methylation in paddy soil:source and distribution of mercury species at a Hg mining area, Guizhou Province, China[J]. Biogeosciences, 2016,13(8):1-31.
    [33] ZHAO L, QIU G, ANDERSON C W N, et al. Mercury methylation in rice paddies and its possible controlling factors in the Hg mining area, Guizhou Province, Southwest China[J]. Environmental Pollution, 2016, 215:1-9.
    [34] GRAHAM A M, CAMERONBURR K, HAJIC H, et al. Sulfurization of dissolved organic matter increases Hg-sulfide-DOM bioavailability to a Hg-Methylating bacterium[J]. Environmental Science & Technology, 2017, 51:9080-9088.
    [35] MOINGT M, LUCOTTE M, PAQUET S, et al. Deciphering the impact of land-uses on terrestrial organic matter and mercury inputs to large boreal lakes of central Québec using lignin biomarkers[J].Applied Geochemistry, 2014, 41:34-48.
    [36] MENG B, FENG X, QIU G, et al. Localization and speciation of mercury in brown rice with implications for Pan-Asian public health[J]. Environmental Science & Technology, 2014, 48(14):7974-7981.
    [37] MENG B, FENG X, QIU G, et al. The process of methylmercury accumulation in rice (Oryza sativa L.)[J]. Environmental Science & Technology, 2011, 45(7):2711-2717.
    [38] XU X, ZHAO J, LI Y, et al. Demethylation of methylmercury in growing rice plants:An evidence of self-detoxification[J].Environmental Pollution, 2016, 210(210):113-120.
    [39] GNAMUŠ A, BYRNE A R, HORVAT M. Mercury in the soil-plant-deer-predator food Chain of a temperate forest in Slovenia[J]. Environmental Science & Technology, 2000, 34(16):3337-3345.
    [40] TANG Z, FAN F, WANG X, et al. Mercury in rice (Orszag sativa L.) and rice-paddy soils under long-term fertilizer and organic amendment[J]. Ecotoxicology & Environmental Safety, 2018, 150:116-122.
  • 加载中
计量
  • 文章访问数:  1250
  • HTML全文浏览数:  1250
  • PDF下载数:  43
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-09-25

不同长度秸秆还田对土壤汞甲基化与水稻植株甲基汞富集的影响

    通讯作者: 王永敏, E-mail: wangym540@swu.edu.cn
  • 1. 西南大学资源环境学院, 重庆, 400715;
  • 2. 重庆市农业资源与环境研究重点实验室, 重庆, 400715
基金项目:

国家自然科学基金(41671469,41603103),中央高校基本科研业务费专项基金项目(XDJK2017B035,XDJK2017D202)和西南大学国家级大学生创新创业训练计划项目(201710635061)资助.

摘要: 为降低秸秆还田引起稻田系统甲基汞(MeHg)升高的风险,采用盆栽试验,研究了添加不同长度水稻秸秆(5 cm、2 cm、粉末)条件下,在水稻整个生长期内土壤汞的甲基化以及水稻植株各组织中MeHg的含量变化特征.结果表明,添加秸秆能显著促进稻田土壤汞的甲基化,并能提升稻米MeHg的富集.不同长度秸秆对土壤MeHg净增长的影响时间不同,较长秸秆能长时间内对土壤汞的甲基化产生促进作用,在水稻生长后期土壤MeHg含量持续偏高,致使晚熟期稻米中MeHg质量浓度偏高;粉碎的秸秆在土壤中能快速降解,尽管在短时间内能引起土壤MeHg含量升高,但在水稻生长后期土壤MeHg含量明显下降,完熟期稻米中MeHg含量也远低于其他两种处理方式.因此,秸秆进行粉碎处理后再还田有利于降低稻米的MeHg富集风险.

English Abstract

参考文献 (40)

目录

/

返回文章
返回