北京城区夏冬两季VOCs时间变化和光化学特征的质子转移反应飞行时间质谱(PTR-TOF-MS)观测

盛久江, 王飞, 李霞, 马志强, 刘全, 赵德龙, 黄梦宇, 丁德平. 北京城区夏冬两季VOCs时间变化和光化学特征的质子转移反应飞行时间质谱(PTR-TOF-MS)观测[J]. 环境化学, 2019, (7): 1590-1599. doi: 10.7524/j.issn.0254-6108.2018092601
引用本文: 盛久江, 王飞, 李霞, 马志强, 刘全, 赵德龙, 黄梦宇, 丁德平. 北京城区夏冬两季VOCs时间变化和光化学特征的质子转移反应飞行时间质谱(PTR-TOF-MS)观测[J]. 环境化学, 2019, (7): 1590-1599. doi: 10.7524/j.issn.0254-6108.2018092601
SHENG Jiujiang, WANG Fei, LI Xia, MA Zhiqiang, LIU Quan, ZHAO Delong, HUANG Mengyu, DING Deping. The temporal variation and photochemical characters of VOCs in summer and winter of Beijing based on PTR-TOF-MS[J]. Environmental Chemistry, 2019, (7): 1590-1599. doi: 10.7524/j.issn.0254-6108.2018092601
Citation: SHENG Jiujiang, WANG Fei, LI Xia, MA Zhiqiang, LIU Quan, ZHAO Delong, HUANG Mengyu, DING Deping. The temporal variation and photochemical characters of VOCs in summer and winter of Beijing based on PTR-TOF-MS[J]. Environmental Chemistry, 2019, (7): 1590-1599. doi: 10.7524/j.issn.0254-6108.2018092601

北京城区夏冬两季VOCs时间变化和光化学特征的质子转移反应飞行时间质谱(PTR-TOF-MS)观测

    通讯作者: 盛久江, E-mail: jiujiangsheng@163.com 赵德龙, E-mail: 980074@163.com
  • 基金项目:

    国家重点研发计划(2016YFA0602001,2017YFC1501405),国家自然科学基金(41807313,41605108,41505128),北京市自然科学基金(8192021,8194065)和中国气象局云雾物理环境重点开放实验室2017年开放课题(2017Z01607)资助.

The temporal variation and photochemical characters of VOCs in summer and winter of Beijing based on PTR-TOF-MS

    Corresponding authors: SHENG Jiujiang, jiujiangsheng@163.com ;  ZHAO Delong, 980074@163.com
  • Fund Project: Supported by the National Key Research and Development Program of China (2016YFA0602001, 2017YFC1501405), National Natural Science Foundation of China (41807313,41605108,41505128), Beijing Municipal Natural Science Foundation (8192021, 8194065) and the Opening Project of Key Laboratory of Cloud Physics in China Meteorological Administration (2017Z01607).
  • 摘要: 为增进对北京地区不同季节大气挥发性有机物(VOCs)变化特征的认识,利用高时间分辨率质子迁移反应-飞行时间质谱(PTR-TOF-MS)于2016年在北京城区开展了VOCs (甲醛、乙醛、丙酮、异戊二烯、苯、甲苯和8碳芳香烃)夏季(6月8日-20日)和冬季(11月22日-12月10日)的连续观测.VOCs体积分数(浓度)的均值为(夏季/冬季,×10-9):甲醛(8.56/24.58)、乙醛(3.95/7.57)、丙酮(5.06/3.50)、异戊二烯(0.66/0.52)、苯(0.53/1.78)、甲苯(1.03/2.54)、8碳芳香烃(1.34/3.42).受大气扩散条件的影响,夏冬两季大部分VOCs浓度波动趋势相近,仅异戊二烯在夏季拥有明显的白天浓度高于夜间的时间序列,其白天的高浓度与植被排放较强有关.由日变化可见:冬季,所有VOCs在中午浓度处于全天较低水平,在早高峰期间VOCs浓度上升明显;夏季,甲醛、乙醛和丙酮等3种含氧VOCs (OVOCs)在中午有短暂的浓度峰值,这与它们光化学二次生成加快有关.由VOC与苯浓度比值的日变化可知:冬季与夏季类似,中午前后3种OVOCs (甲醛、乙醛和丙酮)的光化学生成以及甲苯和8碳芳香烃的光化学消耗都会增强,只是冬季增强的程度明显弱于夏季;在夏冬两季,甲醛中午的光化学生成速率均强于乙醛和丙酮.8碳芳香烃光化学消耗速率大于甲苯的速率仅出现在夏季;异戊二烯在冬季白天不存在植被排放增强的现象,但有光化学消耗加快的特征;夏季北京城区VOCs以机动车排放影响为主,而冬季VOCs还可能来自于燃煤排放.
  • 加载中
  • [1] 李如梅, 武媛媛, 彭林, 等. 朔州市夏季环境空气中VOCs的污染特征及来源解析[J]. 环境化学, 2017, 36(5):984-993.

    LI R M, WU Y Y, PENG L, et al. Characteristics and sources apportionment of ambient volatile organic compounds (VOCs) in summer in Shuozhou[J]. Environmental Chemistry, 2017, 36(5):984-993(in Chinese).

    [2] YUAN B, KOSS A R, WARNEKE C, et al. Proton-transfer-reaction mass spectrometry:Applications in atmospheric sciences[J]. Chemical Reviews, 2017, 117(21):13187-13229.
    [3] 古颖纲, 虞小芳, 杨闻达, 等. 广州市天河区2016年雨季挥发性有机物污染特征及来源解析[J]. 环境科学, 2018, 39(6):2528-2537.

    GU Y G, YU X F, YANG W D, et al. Characteristics and source apportionment of volatile organic compounds in the rainy season of Guangzhou City[J]. Environmental Science, 2018, 39(6):2528-2537(in Chinese).

    [4] WANG T, XUE L K, BRIMBLECOMBE P, et al. Ozone pollution in China:A review of concentrations, meteorological influences, chemical precursors, and effects[J]. Science of the Total Environment, 2017, 575:1582-1596.
    [5] SHAO M, LU S, LIU Y, et al. Volatile organic compounds measured in summer in Beijing and their role in ground-level ozone formation[J]. Journal of Geophysical Research:Atmospheres, 2009, 114:D00G06
    [6] WARNEKE C, GOUW J A, EDWARDS P M, et al. Photochemical aging of volatile organic compounds in the Los Angeles basin:Weekday-weekend effect[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(10):5018-5028.
    [7] LIU C T, MA Z B, MU Y J, et al. The levels, variation characteristics, and sources of atmospheric non-methane hydrocarbon compounds during wintertime in Beijing, China[J]. Atmospheric Chemistry and Physics, 2017, 17(17):10633-10649.
    [8] SHENG J J, ZHAO D L, DING D P, et al. Characterizing the level, photochemical reactivity, emission, and source contribution of the volatile organic compounds based on PTR-TOF-MS during winter haze period in Beijing, China[J]. Atmospheric Research, 2018, 212:54-63.
    [9] YUAN B, SHAO M, DE GOUW J, et al. Volatile organic compounds (VOCs) in urban air:How chemistry affects the interpretation of positive matrix factorization (PMF) analysis[J]. Journal of Geophysical Research:Atmospheres, 2012, 117, D24302.
    [10] ZHANG Y J, MU Y J, MENG F, et al. The pollution levels of BTEX and carbonyls under haze and non-haze days in Beijing, China[J]. Science of the Total Environment, 2014, 490:391-396.
    [11] WANG M, CHEN W, SHAO M, et al. Investigation of carbonyl compound sources at a rural site in the Yangtze River Delta region of China[J]. Journal of Environmental Sciences, 2015, 28(1):128-136.
    [12] TALBOT R W, MOSHER B W, HEIKES B G, et al. Carboxylic acids in the rural continental atmosphere over the eastern United States during the Shenandoah Cloud and Photochemistry Experiment[J]. Journal of Geophysical Research:Atmospheres, 1995, 100(D5):9335-9343.
    [13] EERDEKENS G, GANZEVELD L, DE ARELLANO J V G, et al. Flux estimates of isoprene, methanol and acetone from airborne PTR-MS measurements over the tropical rainforest during the GABRIEL 2005 campaign[J]. Atmospheric Chemistry and Physics, 2009, 9(13):4207-4227.
    [14] AMMANN C, SPIRIG C, NEFTEL A, et al. Application of PTR-MS for measurements of biogenic VOC in a deciduous forest[J]. International Journal of Mass Spectrometry, 2004, 239(2-3):87-101.
    [15] WARNEKE C, DE GOUW J A, GOLDAN P D, et al. Comparison of daytime and nighttime oxidation of biogenic and anthropogenic VOCs along the New England coast in summer during New England Air Quality Study 2002[J]. Journal of Geophysical Research:Atmospheres, 2004, 109(D10):D10309.
    [16] DE GOUW J A, COOPER O R, WARNEKE C, et al. Chemical composition of air masses transported from Asia to the U. S. West Coast during ITCT 2K2:Fossil fuel combustion versus biomass-burning signatures[J]. Journal of Geophysical Research-Atmospheres, 2004, 109(D23):D23S20.
    [17] DE GOUW J A, WARNEKE C, PARRISH D D, et al. Emission sources and ocean uptake of acetonitrile (CH3CN) in the atmosphere[J]. Journal of Geophysical Research-Atmospheres, 2003, 108(D11):4329.
    [18] QUAN J, LIU Q, LI X, et al. Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events[J]. Atmospheric Environment, 2015, 122:306-312.
    [19] PANG X, MU Y. Seasonal and diurnal variations of carbonyl compounds in Beijing ambient air[J]. Atmospheric Environment, 2006, 40(33):6313-6320.
    [20] SONG Y, SHAO M, LIU Y, et al. Source apportionment of ambient volatile organic compounds in Beijing[J]. Environmental Science & Technology, 2007, 41(12):4348-4353.
    [21] WU R R, LI J, HAO Y F, et al. Evolution process and sources of ambient volatile organic compounds during a severe haze event in Beijing, China[J]. Science of the Total Environment, 2016, 560:62-72.
    [22] SUN J, WU F K, HU B, et al. VOC characteristics, emissions and contributions to SOA formation during hazy episodes[J]. Atmospheric Environment, 2016, 141:560-570.
    [23] DUAN J C, GUO S J, TAN J H, et al. Characteristics of atmospheric carbonyls during haze days in Beijing, China[J]. Atmospheric Research, 2012, 114:17-27.
    [24] GAO J, ZHANG J, LI H, et al. Comparative study of volatile organic compounds in ambient air using observed mixing ratios and initial mixing ratios taking chemical loss into account-A case study in a typical urban area in Beijing[J]. Science of the Total Environment, 2018, 628-629:791-804.
    [25] LI L, XIE S, ZENG L, et al. Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China[J]. Atmospheric Environment, 2015, 113:247-254.
    [26] LI K, LI J L, WANG W G, et al. Evaluating the effectiveness of joint emission control policies on the reduction. of ambient VOCs:Implications from observation during the 2014 APEC summit in suburban Beijing[J]. Atmospheric Environment, 2017, 164:117-127.
    [27] LI Y, SHAO M, LU S, et al. Variations and sources of ambient formaldehyde for the 2008 Beijing Olympic games[J]. Atmospheric Environment, 2010, 44(21-22):2632-2639.
    [28] YANG X, XUE L, WANG T, et al. Observations and explicit modeling of summertime carbonyl formation in Beijing:Identification of key precursor species and their impact on atmospheric oxidation chemistry[J]. Journal of Geophysical Research-Atmospheres, 2018, 123(2):1426-1440.
    [29] VALACH A C, LANGFORD B, NEMITZ E, et al. Concentrations of selected volatile organic compounds at kerbside and background sites in central London[J]. Atmospheric Environment, 2014, 95:456-467.
    [30] LIU C T, ZHANG C L, MU Y J, et al. Emission of volatile organic compounds from domestic coal stove with the actual alternation of flaming and smoldering combustion processes[J]. Environmental Pollution, 2017, 221:385-391.
    [31] 李霞, 权建农, 王飞, 等. 激光雷达反演边界层高度方法评估及在北京的应用[J]. 大气科学, 2018, 42(2):435-446.

    LI X, QUAN J, WANG F,et al. 2018. Evaluation of the method for planetary boundary layer height retrieval by lidar and its application in Beijing[J]. Chinese Journal of Atmospheric Sciences, 42(2):435-446(in Chinese).

    [32] ZHANG Y, MU Y, LIANG P, et al. Atmospheric BTEX and carbonyls during summer seasons of 2008-2010 in Beijing[J]. Atmospheric Environment, 2012, 59:186-191.
    [33] GOLDSTEIN A H, SCHADE G W. Quantifying biogenic and anthropogenic contributions to acetone mixing ratios in a rural environment[J]. Atmospheric Environment, 2000, 34(29):4997-5006.
    [34] ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews, 2003, 103(12):4605-4638.
    [35] GUO S, TAN J, DUAN J, et al. Characteristics of atmospheric non-methane hydrocarbons during haze episode in Beijing, China[J]. Environmental Monitoring and Assessment, 2012, 184(12):7235-7246.
  • 加载中
计量
  • 文章访问数:  987
  • HTML全文浏览数:  987
  • PDF下载数:  54
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-09-26

北京城区夏冬两季VOCs时间变化和光化学特征的质子转移反应飞行时间质谱(PTR-TOF-MS)观测

    通讯作者: 盛久江, E-mail: jiujiangsheng@163.com ;  赵德龙, E-mail: 980074@163.com
  • 1. 北京市人工影响天气办公室, 北京, 100089;
  • 2. 北京城市气象研究院, 北京, 100089;
  • 3. 云降水物理研究和云水资源开发北京市重点实验室, 北京, 100089;
  • 4. 中国气象局华北云降水野外科学试验基地, 北京, 101200
基金项目:

国家重点研发计划(2016YFA0602001,2017YFC1501405),国家自然科学基金(41807313,41605108,41505128),北京市自然科学基金(8192021,8194065)和中国气象局云雾物理环境重点开放实验室2017年开放课题(2017Z01607)资助.

摘要: 为增进对北京地区不同季节大气挥发性有机物(VOCs)变化特征的认识,利用高时间分辨率质子迁移反应-飞行时间质谱(PTR-TOF-MS)于2016年在北京城区开展了VOCs (甲醛、乙醛、丙酮、异戊二烯、苯、甲苯和8碳芳香烃)夏季(6月8日-20日)和冬季(11月22日-12月10日)的连续观测.VOCs体积分数(浓度)的均值为(夏季/冬季,×10-9):甲醛(8.56/24.58)、乙醛(3.95/7.57)、丙酮(5.06/3.50)、异戊二烯(0.66/0.52)、苯(0.53/1.78)、甲苯(1.03/2.54)、8碳芳香烃(1.34/3.42).受大气扩散条件的影响,夏冬两季大部分VOCs浓度波动趋势相近,仅异戊二烯在夏季拥有明显的白天浓度高于夜间的时间序列,其白天的高浓度与植被排放较强有关.由日变化可见:冬季,所有VOCs在中午浓度处于全天较低水平,在早高峰期间VOCs浓度上升明显;夏季,甲醛、乙醛和丙酮等3种含氧VOCs (OVOCs)在中午有短暂的浓度峰值,这与它们光化学二次生成加快有关.由VOC与苯浓度比值的日变化可知:冬季与夏季类似,中午前后3种OVOCs (甲醛、乙醛和丙酮)的光化学生成以及甲苯和8碳芳香烃的光化学消耗都会增强,只是冬季增强的程度明显弱于夏季;在夏冬两季,甲醛中午的光化学生成速率均强于乙醛和丙酮.8碳芳香烃光化学消耗速率大于甲苯的速率仅出现在夏季;异戊二烯在冬季白天不存在植被排放增强的现象,但有光化学消耗加快的特征;夏季北京城区VOCs以机动车排放影响为主,而冬季VOCs还可能来自于燃煤排放.

English Abstract

参考文献 (35)

目录

/

返回文章
返回