五乙烯六胺改性柿单宁金属吸附剂对Pd(Ⅱ)的吸附回收

闵慧玉, 易庆平, 樊睿怡, 洪星星, 张青林, 罗正荣. 五乙烯六胺改性柿单宁金属吸附剂对Pd(Ⅱ)的吸附回收[J]. 环境化学, 2019, (8): 1775-1784. doi: 10.7524/j.issn.0254-6108.2018100902
引用本文: 闵慧玉, 易庆平, 樊睿怡, 洪星星, 张青林, 罗正荣. 五乙烯六胺改性柿单宁金属吸附剂对Pd(Ⅱ)的吸附回收[J]. 环境化学, 2019, (8): 1775-1784. doi: 10.7524/j.issn.0254-6108.2018100902
MIN Huiyu, YI Qingping, FAN Ruiyi, HONG Xingxing, ZHANG Qinglin, LUO Zhengrong. Adsorptive characteristics and performance of pentaethylenehexamine modified persimmon power formaldehyde resin biosorbent for Pd(Ⅱ) recovery[J]. Environmental Chemistry, 2019, (8): 1775-1784. doi: 10.7524/j.issn.0254-6108.2018100902
Citation: MIN Huiyu, YI Qingping, FAN Ruiyi, HONG Xingxing, ZHANG Qinglin, LUO Zhengrong. Adsorptive characteristics and performance of pentaethylenehexamine modified persimmon power formaldehyde resin biosorbent for Pd(Ⅱ) recovery[J]. Environmental Chemistry, 2019, (8): 1775-1784. doi: 10.7524/j.issn.0254-6108.2018100902

五乙烯六胺改性柿单宁金属吸附剂对Pd(Ⅱ)的吸附回收

    通讯作者: 易庆平, E-mail: jmyiqingping@126.com 罗正荣, E-mail: luozhr@mail.hzau.edu.cn
  • 基金项目:

    大别山特色资源开发湖北省协同创新中心项目(2015TD01)和湖北省教育厅科学技术研究项目(D20174302)资助.

Adsorptive characteristics and performance of pentaethylenehexamine modified persimmon power formaldehyde resin biosorbent for Pd(Ⅱ) recovery

    Corresponding authors: YI Qingping, jmyiqingping@126.com ;  LUO Zhengrong, luozhr@mail.hzau.edu.cn
  • Fund Project: Supported by Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains (2015TD01) and Scientific Research Project of Hubei Provincical Dapartment of Education (D20174302).
  • 摘要: 为提高柿单宁金属吸附剂对贵金属Pd(Ⅱ)的吸附能力,采用五乙烯六胺(PEHA)改性柿粉甲醛树脂(PPFR),获得新型柿单宁金属吸附剂PH-PPFR.通过静态吸附、动态吸附以及SEM、FTIR、XRD和XPS等表征手段探讨其对Pd(Ⅱ)的吸附效应.结果表明,不同酸性溶液中改性后PH-PPFR对Pd(Ⅱ)的吸附量均显著高于未改性PPFR,PH-PPFR在盐酸浓度高达4.0 mol·L-1的条件下仍有较强吸附能力.PH-PPFR对Pd(Ⅱ)的吸附过程符合拟二级吸附动力学过程;等温线数据对Langmuir模型线性拟合系数R2均达到0.999,理论吸附最大值为263.16 mg·g-1.模拟线路板含钯液柱吸附-解吸附结果显示PH-PPFR对Pd(Ⅱ)的吸附具有极高的选择性,吸附后的Pd(Ⅱ)很容易被酸性硫脲洗脱.结合表征分析,推测吸附机理主要为表面螯合和氧化还原反应,同时受到阴离子交换反应及静电作用的影响,胺基基团和酚羟基为主要参与官能团.PH-PPFR制备方法简单、易行,对Pd(Ⅱ)表现出高吸附容量和选择吸附性,可实现盐酸体系下对电子废物酸浸液中贵金属Pd(Ⅱ)的高效富集和分离.
  • 加载中
  • [1] WILBURN D R, BLEIWAS D I. Platinum-group metals-world supply and demand[R]. US geological survey open-file report, Washington, 2005:57-75.
    [2] ZEREINI P F, ALT F. Anthropogenic platinum-group element emissions[M]. Springer Berlin Heidelberg, 2000:3-14.
    [3] TUNCUK A, STAZI V, AKCIL A, et al. Aqueous metal recovery techniques from e-scrap:Hydrometallurgy in recycling[J]. Minerals Engineering, 2012, 25(1):28-37.
    [4] CUI J, ZHANG L. Metallurgical recovery of metals from electronic waste:A review[J]. Journal of Hazardous Materials, 2008, 158(2):228-256.
    [5] BREIVIK K, ARMITAGE J M, WANIA F, et al. Tracking the global generation and exports of e-waste. Do existing estimates add up?[J]. Environmental Science & Technology, 2014, 48(15):8735-8743.
    [6] LI J, ZENG X, CHEN M, et al. "Control-Alt-Delete":rebooting solutions for the e-waste problem[J]. Environmental Science & Technology, 2015, 49(12):7095-8108.
    [7] 郭学益,严康,张婧熙,等.典型电子废弃物中金属资源开采潜力分析[J].中国有色金属学报,2018,28(2):365-376.

    GUO X Y, YAN K, ZHANG J X, et al. Exploitation potentiality analysis of metal resources in typical electronic waste[J]. The Chinese Journal of Nonferrous Metals, 2018(2), 28(2):365-376(in Chinese).

    [8] 贝新宇,鞠美庭,陈书雪.电子废弃物中贵金属的回收技术[J].环境科技,2008,21(s2):114-117.

    BEI X Y, JU M T, CHEN S X. Recycling technologies of precious metals in electronic waste[J]. Environmental Science and Technology, 2008, 21(s2):114-117(in Chinese).

    [9] DODSON J R, PARKER H L, MUNOZ GARCIA A, et al. ChemInform abstract:Bio-derived materials as a green route for precious & critical metal recovery and re-use[J]. Green Chemistry, 2015, 46(23):1951-1965.
    [10] 谢枫,樊在军,张青林,等.柿单宁在重金属吸附中的应用研究进展[J].华中农业大学学报,2012,31(3):391-396.

    XIE F, FAN Z J, ZHANG Q L, et al. Advances in using persimmon tannin to absorb heavy metals[J]. Journal of Huazhong Agricultural University, 2012, 31(3):391-396(in Chinese).

    [11] MACK C, WILHELMI B, DUNCAN J R, et al. Biosorption of precious metals[J]. Biotechnology Advances, 2007, 25(3):264-271.
    [12] KIM Y H, NAKANO Y. Adsorption mechanism of palladium by redox within condensed-tannin gel[J]. Water Research, 2005, 39(7):1324-1330.
    [13] YI Q, FAN R, XIE F, et al. Recovery of palladium(Ⅱ) from nitric acid medium using a natural resin prepared from persimmon dropped fruits residues[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61:299-305.
    [14] XIONG Y, ADHIKARI C R, KAWAKITA H, et al. Selective recovery of precious metals by persimmon waste chemically modified with dimethylamine[J]. Bioresource Technology, 2009, 100(18):4083-4089.
    [15] GURUNG M, ADHIKARI B B, KAWAKITA H, et al. Selective recovery of precious metals from acidic leach liquor of circuit boards of spent mobile phones using chemically modified persimmon tannin gel[J]. Industrial & Engineering Chemistry Research, 2012, 51(37):11901-11913.
    [16] GURUNG M, ADHIKARI B B, MORISADA S, et al. N-aminoguanidine modified persimmon tannin:A new sustainable material for selective adsorption, preconcentration and recovery of precious metals from acidic chloride solution[J]. Bioresource Technology, 2013, 129(2):108-117.
    [17] KAGAYA S, MAEBA E, INOUE Y, et al. A solid phase extraction using a chelate resin immobilizing carboxymethylated pentaethylenehexamine for separation and preconcentration of trace elements in water samples.[J]. Talanta, 2009, 79(2):146-152.
    [18] IANNICELLI-ZUBIANI E M, STAMPINO P G, CRISTIANI C, et al. Enhanced lanthanum adsorption by amine modified activated carbon[J]. Chemical Engineering Journal, 2018, 341:75-82.
    [19] WANG L, LIANG W, YU J, et al. Flocculation of microcystis aeruginosa, using modified larch tannin[J]. Environmental Science & Technology, 2013, 47(11):5771-5777.
    [20]
    [21] GURUNG M, ADHIKARI B B, KAWAKITA H, et al. Recovery of Au(Ⅲ) by using low cost adsorbent prepared from persimmon tannin extract[J]. Chemical Engineering Journal, 2011, 174(2-3):556-563.
    [22] ZHOU L, XU J, LIANG X, LIU Z. Adsorption of platinum(IV) and palladium(Ⅱ) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine[J]. Journal of Hazardous Materials, 2010, 182(1-3):518-524.
    [23] PELS J R, KAPTEIJN F, MOULIJN J A, et al. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis[J]. Carbon, 1995, 33(11):1641-1653.
    [24] DENG S, TING Y P. Characterization of PEI-modified biomass and biosorption of Cu(Ⅱ), Pb(Ⅱ) and Ni(Ⅱ)[J]. Water Research, 2005, 39(10):2167-2177.
    [25] LIN S, WEI W, WU X, et al. Selective recovery of Pd(Ⅱ) from extremely acidic solution using ion-imprinted chitosan fiber:Adsorption performance and mechanisms[J]. Journal of Hazardous Materials, 2015, 299(6):10-17.
    [26] KUMAR A S K, SHARMA S, REDDY R S, et al. Comprehending the interaction between chitosan and ionic liquid for the adsorption of palladium[J]. International Journal of Biological Macromolecules, 2015, 72:633-639.
    [27] NGAH W S W, FATINATHAN S. Pb(Ⅱ) biosorption using chitosan and chitosan derivatives beads:Equilibrium, ion exchange and mechanism studies[J]. Journal of Environmental Sciences, 2010, 22(3):338-346.
    [28] WOŁOWICZ A, HUBICKI Z. Effect of matrix and structure types of ion exchangers on palladium(Ⅱ) sorption from acidic medium[J]. Chemical Engineering Journal, 2010, 160(2):660-670.
    [29] RUIZ M, SASTRE A M, GUIBAL E. Palladium sorption on glutaraldehyde-crosslinked chitosan[J]. Reactive & Functional Polymers, 2000, 45(3):155-173.
    [30] HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5):451-465.
    [31] CHOUDHARY B C, PAUL D, BORSE A U, et al. Recovery of palladium from secondary waste using soluble tannins cross-linked Lagerstroemia speciosa leaves powder[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(7):1667-1677.
    [32] MA H W, LIAO X P, XIN L, et al. Recovery of platinum(IV) and palladium(Ⅱ) by bayberry tannin immobilized collagen fiber membrane from water solution[J]. Journal of Membrane Science, 2006, 278(1):373-380.
    [33] CHO C W, KANG S B, KIM S, et al. Reusable polyethylenimine-coated polysulfone/bacterial biomass composite fiber biosorbent for recovery of Pd(Ⅱ) from acidic solutions[J]. Chemical Engineering Journal, 2016, 302:545-551.
  • 加载中
计量
  • 文章访问数:  1286
  • HTML全文浏览数:  1286
  • PDF下载数:  54
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-10-09
闵慧玉, 易庆平, 樊睿怡, 洪星星, 张青林, 罗正荣. 五乙烯六胺改性柿单宁金属吸附剂对Pd(Ⅱ)的吸附回收[J]. 环境化学, 2019, (8): 1775-1784. doi: 10.7524/j.issn.0254-6108.2018100902
引用本文: 闵慧玉, 易庆平, 樊睿怡, 洪星星, 张青林, 罗正荣. 五乙烯六胺改性柿单宁金属吸附剂对Pd(Ⅱ)的吸附回收[J]. 环境化学, 2019, (8): 1775-1784. doi: 10.7524/j.issn.0254-6108.2018100902
MIN Huiyu, YI Qingping, FAN Ruiyi, HONG Xingxing, ZHANG Qinglin, LUO Zhengrong. Adsorptive characteristics and performance of pentaethylenehexamine modified persimmon power formaldehyde resin biosorbent for Pd(Ⅱ) recovery[J]. Environmental Chemistry, 2019, (8): 1775-1784. doi: 10.7524/j.issn.0254-6108.2018100902
Citation: MIN Huiyu, YI Qingping, FAN Ruiyi, HONG Xingxing, ZHANG Qinglin, LUO Zhengrong. Adsorptive characteristics and performance of pentaethylenehexamine modified persimmon power formaldehyde resin biosorbent for Pd(Ⅱ) recovery[J]. Environmental Chemistry, 2019, (8): 1775-1784. doi: 10.7524/j.issn.0254-6108.2018100902

五乙烯六胺改性柿单宁金属吸附剂对Pd(Ⅱ)的吸附回收

    通讯作者: 易庆平, E-mail: jmyiqingping@126.com ;  罗正荣, E-mail: luozhr@mail.hzau.edu.cn
  • 1. 华中农业大学, 园艺植物生物学教育部重点实验室, 武汉, 430070;
  • 2. 荆楚理工学院生物工程学院, 荆门, 448000;
  • 3. 广东省农业科学院果树研究所, 农业部南亚热带果树生物学与遗传资源利用重点实验室, 广州, 510640;
  • 4. 黄冈师范学院, 大别山特色资源开发湖北省协同创新中心, 黄冈, 438000
基金项目:

大别山特色资源开发湖北省协同创新中心项目(2015TD01)和湖北省教育厅科学技术研究项目(D20174302)资助.

摘要: 为提高柿单宁金属吸附剂对贵金属Pd(Ⅱ)的吸附能力,采用五乙烯六胺(PEHA)改性柿粉甲醛树脂(PPFR),获得新型柿单宁金属吸附剂PH-PPFR.通过静态吸附、动态吸附以及SEM、FTIR、XRD和XPS等表征手段探讨其对Pd(Ⅱ)的吸附效应.结果表明,不同酸性溶液中改性后PH-PPFR对Pd(Ⅱ)的吸附量均显著高于未改性PPFR,PH-PPFR在盐酸浓度高达4.0 mol·L-1的条件下仍有较强吸附能力.PH-PPFR对Pd(Ⅱ)的吸附过程符合拟二级吸附动力学过程;等温线数据对Langmuir模型线性拟合系数R2均达到0.999,理论吸附最大值为263.16 mg·g-1.模拟线路板含钯液柱吸附-解吸附结果显示PH-PPFR对Pd(Ⅱ)的吸附具有极高的选择性,吸附后的Pd(Ⅱ)很容易被酸性硫脲洗脱.结合表征分析,推测吸附机理主要为表面螯合和氧化还原反应,同时受到阴离子交换反应及静电作用的影响,胺基基团和酚羟基为主要参与官能团.PH-PPFR制备方法简单、易行,对Pd(Ⅱ)表现出高吸附容量和选择吸附性,可实现盐酸体系下对电子废物酸浸液中贵金属Pd(Ⅱ)的高效富集和分离.

English Abstract

参考文献 (33)

返回顶部

目录

/

返回文章
返回