五乙烯六胺改性柿单宁金属吸附剂对Pd(Ⅱ)的吸附回收
Adsorptive characteristics and performance of pentaethylenehexamine modified persimmon power formaldehyde resin biosorbent for Pd(Ⅱ) recovery
-
摘要: 为提高柿单宁金属吸附剂对贵金属Pd(Ⅱ)的吸附能力,采用五乙烯六胺(PEHA)改性柿粉甲醛树脂(PPFR),获得新型柿单宁金属吸附剂PH-PPFR.通过静态吸附、动态吸附以及SEM、FTIR、XRD和XPS等表征手段探讨其对Pd(Ⅱ)的吸附效应.结果表明,不同酸性溶液中改性后PH-PPFR对Pd(Ⅱ)的吸附量均显著高于未改性PPFR,PH-PPFR在盐酸浓度高达4.0 mol·L-1的条件下仍有较强吸附能力.PH-PPFR对Pd(Ⅱ)的吸附过程符合拟二级吸附动力学过程;等温线数据对Langmuir模型线性拟合系数R2均达到0.999,理论吸附最大值为263.16 mg·g-1.模拟线路板含钯液柱吸附-解吸附结果显示PH-PPFR对Pd(Ⅱ)的吸附具有极高的选择性,吸附后的Pd(Ⅱ)很容易被酸性硫脲洗脱.结合表征分析,推测吸附机理主要为表面螯合和氧化还原反应,同时受到阴离子交换反应及静电作用的影响,胺基基团和酚羟基为主要参与官能团.PH-PPFR制备方法简单、易行,对Pd(Ⅱ)表现出高吸附容量和选择吸附性,可实现盐酸体系下对电子废物酸浸液中贵金属Pd(Ⅱ)的高效富集和分离.Abstract: To improve the adsorption efficiency of persimmon tannin adsorbent, pentaethylenehexamine (PEHA) was grafted on the surface of persimmon powder formaldehyde resin (PPFR) to synthesize a new biosorbent named PH-PPFR. The biosorbent was characterized by FTIR, SEM, XRD and XPS, and the adsorption performance of PH-PPFR was evaluated through batch and dynamic adsorption tests. According to the experimental data, PH-PPFR showed higher adsorption capacity to Pd(Ⅱ) than PPFR, with a tolerance of strong acid condition as high as 4.0 mol·L-1 HCl solution. The pseudo-second-order model was appropriate for fitting the kinetic experimental data of PH-PPFR, and the adsorption isotherm was well fitted with Langmuir model (R2>0.999), which indicated that adsorption process took place on the surface of the adsorbent, and the maximum adsorption capacity was as high as 263.16 mg·g-1. The column adsorption-desorption experiment showed high adsorption selectivity and the adsorbed Pd(Ⅱ) ions could be easily desorbed with acidic thiourea. The main adsorption mechanism was proposed to be chelation and redox reaction between Pd(Ⅱ) and hydroxyl/amine groups on PH-PPFR, which was accompanied with negative ion-exchange and electrostatic adsorption. with easy synthesis, high adsorption capacity and efficiency, PH-PPFR is a promising sorbent for the enrichment and separation of Pd (Ⅱ) in HCl solution.
-
Key words:
- Persimmon tannin /
- Bio-adsorbent /
- Pentaethylenehexamine (PEHA) /
- Palladium /
- E-waste
-
-
[1] WILBURN D R, BLEIWAS D I. Platinum-group metals-world supply and demand[R]. US geological survey open-file report, Washington, 2005:57-75. [2] ZEREINI P F, ALT F. Anthropogenic platinum-group element emissions[M]. Springer Berlin Heidelberg, 2000:3-14. [3] TUNCUK A, STAZI V, AKCIL A, et al. Aqueous metal recovery techniques from e-scrap:Hydrometallurgy in recycling[J]. Minerals Engineering, 2012, 25(1):28-37. [4] CUI J, ZHANG L. Metallurgical recovery of metals from electronic waste:A review[J]. Journal of Hazardous Materials, 2008, 158(2):228-256. [5] BREIVIK K, ARMITAGE J M, WANIA F, et al. Tracking the global generation and exports of e-waste. Do existing estimates add up?[J]. Environmental Science & Technology, 2014, 48(15):8735-8743. [6] LI J, ZENG X, CHEN M, et al. "Control-Alt-Delete":rebooting solutions for the e-waste problem[J]. Environmental Science & Technology, 2015, 49(12):7095-8108. [7] 郭学益,严康,张婧熙,等.典型电子废弃物中金属资源开采潜力分析[J].中国有色金属学报,2018,28(2):365-376. GUO X Y, YAN K, ZHANG J X, et al. Exploitation potentiality analysis of metal resources in typical electronic waste[J]. The Chinese Journal of Nonferrous Metals, 2018(2), 28(2):365-376(in Chinese).
[8] 贝新宇,鞠美庭,陈书雪.电子废弃物中贵金属的回收技术[J].环境科技,2008,21(s2):114-117. BEI X Y, JU M T, CHEN S X. Recycling technologies of precious metals in electronic waste[J]. Environmental Science and Technology, 2008, 21(s2):114-117(in Chinese).
[9] DODSON J R, PARKER H L, MUNOZ GARCIA A, et al. ChemInform abstract:Bio-derived materials as a green route for precious & critical metal recovery and re-use[J]. Green Chemistry, 2015, 46(23):1951-1965. [10] 谢枫,樊在军,张青林,等.柿单宁在重金属吸附中的应用研究进展[J].华中农业大学学报,2012,31(3):391-396. XIE F, FAN Z J, ZHANG Q L, et al. Advances in using persimmon tannin to absorb heavy metals[J]. Journal of Huazhong Agricultural University, 2012, 31(3):391-396(in Chinese).
[11] MACK C, WILHELMI B, DUNCAN J R, et al. Biosorption of precious metals[J]. Biotechnology Advances, 2007, 25(3):264-271. [12] KIM Y H, NAKANO Y. Adsorption mechanism of palladium by redox within condensed-tannin gel[J]. Water Research, 2005, 39(7):1324-1330. [13] YI Q, FAN R, XIE F, et al. Recovery of palladium(Ⅱ) from nitric acid medium using a natural resin prepared from persimmon dropped fruits residues[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61:299-305. [14] XIONG Y, ADHIKARI C R, KAWAKITA H, et al. Selective recovery of precious metals by persimmon waste chemically modified with dimethylamine[J]. Bioresource Technology, 2009, 100(18):4083-4089. [15] GURUNG M, ADHIKARI B B, KAWAKITA H, et al. Selective recovery of precious metals from acidic leach liquor of circuit boards of spent mobile phones using chemically modified persimmon tannin gel[J]. Industrial & Engineering Chemistry Research, 2012, 51(37):11901-11913. [16] GURUNG M, ADHIKARI B B, MORISADA S, et al. N-aminoguanidine modified persimmon tannin:A new sustainable material for selective adsorption, preconcentration and recovery of precious metals from acidic chloride solution[J]. Bioresource Technology, 2013, 129(2):108-117. [17] KAGAYA S, MAEBA E, INOUE Y, et al. A solid phase extraction using a chelate resin immobilizing carboxymethylated pentaethylenehexamine for separation and preconcentration of trace elements in water samples.[J]. Talanta, 2009, 79(2):146-152. [18] IANNICELLI-ZUBIANI E M, STAMPINO P G, CRISTIANI C, et al. Enhanced lanthanum adsorption by amine modified activated carbon[J]. Chemical Engineering Journal, 2018, 341:75-82. [19] WANG L, LIANG W, YU J, et al. Flocculation of microcystis aeruginosa, using modified larch tannin[J]. Environmental Science & Technology, 2013, 47(11):5771-5777. [20] [21] GURUNG M, ADHIKARI B B, KAWAKITA H, et al. Recovery of Au(Ⅲ) by using low cost adsorbent prepared from persimmon tannin extract[J]. Chemical Engineering Journal, 2011, 174(2-3):556-563. [22] ZHOU L, XU J, LIANG X, LIU Z. Adsorption of platinum(IV) and palladium(Ⅱ) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine[J]. Journal of Hazardous Materials, 2010, 182(1-3):518-524. [23] PELS J R, KAPTEIJN F, MOULIJN J A, et al. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis[J]. Carbon, 1995, 33(11):1641-1653. [24] DENG S, TING Y P. Characterization of PEI-modified biomass and biosorption of Cu(Ⅱ), Pb(Ⅱ) and Ni(Ⅱ)[J]. Water Research, 2005, 39(10):2167-2177. [25] LIN S, WEI W, WU X, et al. Selective recovery of Pd(Ⅱ) from extremely acidic solution using ion-imprinted chitosan fiber:Adsorption performance and mechanisms[J]. Journal of Hazardous Materials, 2015, 299(6):10-17. [26] KUMAR A S K, SHARMA S, REDDY R S, et al. Comprehending the interaction between chitosan and ionic liquid for the adsorption of palladium[J]. International Journal of Biological Macromolecules, 2015, 72:633-639. [27] NGAH W S W, FATINATHAN S. Pb(Ⅱ) biosorption using chitosan and chitosan derivatives beads:Equilibrium, ion exchange and mechanism studies[J]. Journal of Environmental Sciences, 2010, 22(3):338-346. [28] WOŁOWICZ A, HUBICKI Z. Effect of matrix and structure types of ion exchangers on palladium(Ⅱ) sorption from acidic medium[J]. Chemical Engineering Journal, 2010, 160(2):660-670. [29] RUIZ M, SASTRE A M, GUIBAL E. Palladium sorption on glutaraldehyde-crosslinked chitosan[J]. Reactive & Functional Polymers, 2000, 45(3):155-173. [30] HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5):451-465. [31] CHOUDHARY B C, PAUL D, BORSE A U, et al. Recovery of palladium from secondary waste using soluble tannins cross-linked Lagerstroemia speciosa leaves powder[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(7):1667-1677. [32] MA H W, LIAO X P, XIN L, et al. Recovery of platinum(IV) and palladium(Ⅱ) by bayberry tannin immobilized collagen fiber membrane from water solution[J]. Journal of Membrane Science, 2006, 278(1):373-380. [33] CHO C W, KANG S B, KIM S, et al. Reusable polyethylenimine-coated polysulfone/bacterial biomass composite fiber biosorbent for recovery of Pd(Ⅱ) from acidic solutions[J]. Chemical Engineering Journal, 2016, 302:545-551. -

计量
- 文章访问数: 1286
- HTML全文浏览数: 1286
- PDF下载数: 54
- 施引文献: 0