湖南桃江锰矿对溶液中As(Ⅴ)和As(Ⅲ)的去除及迁移行为对比
Comparison of removal and migration behavior of As(Ⅴ) and As(Ⅲ) in solution on Taojiang manganese ore, Hunan Province
-
摘要: 锰氧化物对砷的去除有着环境和地球化学现实意义,本文通过批实验和柱实验研究湖南桃江锰矿对溶液中As(Ⅴ/Ⅲ)的去除行为差异和迁移行为.Langmuir吸附等温线结果表明,锰矿对As(V)和As(Ⅲ)的理论最大吸附量分别为1.32 mg·g-1和0.30 mg·g-1.As(Ⅴ/Ⅲ)在锰矿表面的动力学符合拟二阶动力学模型,表明锰矿吸附As(Ⅴ/Ⅲ)均属于化学吸附,受化学反应速率控制;反应吸附速率常数K2[As(Ⅴ)]>K2[As(Ⅲ)],表明锰矿对As(Ⅴ)的吸附速率更快.锰矿在氧化As(Ⅲ)时,溶液中As(Ⅲ)减少速率与溶液中Mn浓度变化非常一致,表明砷的氧化行为与锰矿相关.CDE和Thomas吸附模型拟合As(Ⅴ)和As(Ⅲ)的迁移行为表明,Mn2+、Al3+、PO43-和SiO32-均会降低锰矿的最大吸附量和滞留因子,其中Al3+对As(Ⅲ)的吸附具有较强的拮抗作用,最大吸附量下降至0.002 mg·g-1,对As(Ⅴ)的拮抗作用相对较弱,而PO43-和SiO32-对As(Ⅴ/Ⅲ)在柱实验中的拮抗作用相近.研究为就地处理湖南地表和地下水砷污染提供了新的处理矿物.Abstract: Removal of arsenic by manganese oxide has environmental and geochemical significance. In this study, batch and column experiments were carried out to compare and analyze the differences in the removal and migration behavior of As(Ⅴ) and As(Ⅲ) in Taojiang manganese mine, Hunan Province. The langmuir adsorption isotherm showed that the maximum adsorption capacity of manganese ore for As(Ⅴ) and As(Ⅲ) was 1.32 mg·g-1 and 0.30 mg·g-1 respectively. The kinetics of As(Ⅴ/Ⅲ) on the surface of manganese ore conformed to the pseudo-second-order reaction, which indicated that the adsorption of As(Ⅴ/Ⅲ) was chemical adsorption, and was controlled by chemical reaction rate. The adsorption reaction rate constant was K2[As(Ⅴ)]>K2[As(Ⅲ)], indicating that the adsorption rate of As(Ⅴ) was relatively faster than that of As(Ⅲ). The reduction rate of As(Ⅲ) in solution was highly consistent with the change of Mn concentration in solution, showing that the oxidation behavior of As(Ⅲ) was related to manganese ore. CDE and Thomas adsorption model showed that Mn2+, Al3+, PO43- and SiO32- was reduced the maximum adsorption capacity and retention factor of manganese ore. Among them, Al3+ showed strong inhibitory effect to the adsorption of As(Ⅲ), and the maximum adsorption amount dropped to 0.002 mg·g-1. The inhibitory effect to As(Ⅴ) was relatively weak, while PO43- and SiO32- had similar inhibition to As(Ⅴ/Ⅲ) in the column experiments. The study provided new minerals for the in-situ treatment of arsenic contamination of surface and groundwater in Hunan Province.
-
Key words:
- arsenic /
- natural manganese ore /
- adsorption /
- migration /
- Hunan Taojiang
-
-
[1] 胡珊, 聂麦茜, 卢金锁,等. 镉对砷在二氧化钛上吸附性能的影响[J]. 环境化学, 2011,30(4):739-746. HU S, NIE M Q, LU J S, et al. Cadmium effect on arsenate adsorption on TiO2[J]. Environmental Chemistry, 2011, 30(4):739-746(in Chinese).
[2] 刘建国,卢学实,曾虹燕.水体系中砷污染及除砷方法探讨[J]. 湖南生态科学学报, 2002,8(2):119-122. LIU J G, LU X S, ZENG H Y. Review of arsenium pollution and removal in water environment[J]. Journal of Hunan Environment-Biological Polytechnic, 2002,8(2):119-122(in Chinese).
[3] 胡毅鸿,周蕾,李欣,等. 石门雄黄矿区As污染研究Ⅰ——As空间分布、化学形态与酸雨溶出特性[J]. 农业环境科学学报,2015,34(8):1515-1521. HU Y H, ZHOU L, LI X, et al. Arsenic contamination in Shimen Realgar Mine Ⅰ:As Spatial distribution,chemical fractionations and leaching[J]. Journal of Agro-Environment Science, 2015, 34(8):1515-1521(in Chinese).
[4] FAN L J,ZHAO F H,LIU JING, et al. Dissolution of realgar by Acidithiobacillus ferrooxidans, in the presence and absence of zerovalent iron:Implications for remediation of iron-deficient realgar tailings[J]. Chemosphere, 2018:209:381-391 [5] SALEH T A, AGARWAL S, GUPTA V K. Synthesis of MWCNT/MnO 2 and their application for simultaneous oxidation of arsenite and sorption of arsenate[J]. Applied Catalysis B Environmental, 2011, 106(1-2):46-53. [6] LIU J, HE L, DONG F, et al. The role of nano-sized manganese coatings on bone char in removing arsenic(Ⅴ) from solution:Implications for permeable reactive barrier technologies[J]. Chemosphere, 2016, 153:146-154. [7] 杨艺琳,周孜迈,邓文娜,等. 浮石负载纳米零价铁去除水相中的砷(Ⅴ)[J]. 环境化学,2017,36(3):598-607. YANG Y L, ZHOU Z M, DENG W N, et al. Removal of arsenic(Ⅴ) from aqueous solutions using improved nanoscale zero-valent iron on pumice[J]. Environmental Chemistry, 2017, 36(3):598-607(in Chinese).
[8] 聂晓,阎莉,张建锋. 高指数晶面二氧化钛对砷、锑的共吸附去除[J]. 环境化学,2018,37(2):318-326. NIE X, YAN L, ZHANG J F. Simultaneous removal of arsenic and antimony on high-index TiO2(HTiO2)[J]. Environmental Chemistry, 2018, 37(2):318-326(in Chinese).
[9] GUO H, STVBEN D, BERNER Z. Removal of arsenic from aqueous solution by natural siderite and hematite[J]. Applied Geochemistry, 2007, 22(5):1039-1051. [10] SULLIVAN C, TYRER M, CHEESEMAN C R, et al. Disposal of water treatment wastes containing arsenic:A review[J]. Science of the Total Environment, 2010, 408(8):1770-1778. [11] ZHANG S, NIU H, CAI Y, et al. Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials:MnFe2O4 and CoFe2O4[J]. Chemical Engineering Journal, 2010, 158(3):599-607. [12] SIMEONIDIS K, GKINIS T, TRESINTSI S, ET AL. Magnetic separation of hematite-coated Fe3O4 particles used as arsenic adsorbents[J]. Chemical Engineering Journal, 2011, 168(3):1008-1015. [13] FENG X, WANG P, SHI Z, et al. A quantitative model for the coupled kinetics of arsenic adsorption/desorption and oxidation on manganese oxides[J]. Environmental Science & Technology Letters, 2018, 5:175-180. [14] HOFER W. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils[J]. Environmental Pollution, 2011, 159(12):3269-3282. [15] SUN J, LIAN F, LIU Z, et al. Biochars derived from various crop straws:Characterization and Cd(Ⅱ) removal potential[J]. Ecotoxicology & Environmental Safety, 2014, 106(2):226-231. [16] CHAKRAVARTY S, DUREJA V, BHATTACHARYYA G, et al. Removal of arsenic from groundwater using low cost ferruginous manganese ore[J]. Wawter Research, 2002, 36(3):625-632. [17] KAMEDA T, SUZUKI Y, YOSHIOKA T. Removal of arsenic from an aqueous solution by coprecipitation with manganese oxide[J]. Journal of Environmental Chemical Engineering, 2014, 2(4):2045-2049. [18] 黎跃平. 湖南省桃江锰矿贫薄矿床开采中的质量管理[J]. 中国锰业, 2001, 19(2):54-55. LI Y P. Quality management of mining poor and thin ore in Taojiang Mn deposit[J]. Chinas Manganese Industry, 200119(2):54-55(in Chinese).
[19] THOMAS, HENRY C. Heterogeneous ion exchange in a flowing system[J]. Journal of the American Chemical Society, 1944, 66(10):1664-1666. [20] HOU J, LUO J, HU Z, et al. Tremendous effect of oxygen vacancy defects on the oxidation of arsenite to arsenate on cryptomelane-type manganese oxide[J]. Chemical Engineering Journal, 2016, 306:597-606. [21] HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5):451-465. [22] GIMÉNEZ J, MARTÍNEZ M, PABLO J D, et al. Arsenic sorption onto natural hematite, magnetite, and goethite[J]. Journal of Hazardous Materials, 2007, 141(3):575-580. [23] RESEARCH W. Adsorption of As(V) and As(Ⅲ) by nanocrystalline titanium dioxide.[J]. Water Research, 2005, 39(11):2327-2337. [24] LAFFERTY B J, GINDER-VOGEL M, SPARKS D L. Arsenite oxidation by a poorly crystalline manganese-oxide 1. Stirred-flow experiments[J]. Environmental Science & Technology, 2010, 44(22):8460-8466. [25] TOURNASSAT C, CHARLET L, BOSBACH D, et al. Arsenic(Ⅲ) oxidation by birnessite and precipitation of manganese(Ⅱ) arsenate[J]. Environmental Science & Technology, 2002, 36(3):493-500. [26] HAMMARSTROM J M, SIBRELL P L, BELKIN H E. Characterization of limestone reacted with acid-mine drainage in a pulsed limestone bed treatment system at the Friendship Hill National Historical Site, Pennsylvania, USA[J]. Applied Geochemistry, 2003, 18(11):1705-1721. [27] SANTOMARTINO S, WEBB J A. Estimating the longevity of limestone drains in treating acid mine drainage containing high concentrations of iron[J]. Applied Geochemistry, 2007, 22(11):2344-2361. [28] YANG J K, SONG K H, KIM B K, et al. Arsenic removal by iron and manganese coated sand[J]. Water Science & Technology, 2007, 56(7):161-169. [29] BOWMAN R S. Aqueous environmental geochemistry[J]. Eos Transactions American Geophysical Union, 2013, 78(50):586-586. [30] MANNING B A, FENDORE S E, BOSTICK B, et al. Arsenic(Ⅲ) oxidation and arsenic(Ⅴ) adsorption reactions on synthetic birnessite[J]. Environmental Science & Technology, 2002, 36(5):976-981. [31] LIN T F, WU J K. Adsorption of arsenite and arsenate within activated alumina grains:Equilibrium and kinetics[J]. Water Research, 2001, 35(8):2049-2057. -

计量
- 文章访问数: 1567
- HTML全文浏览数: 1567
- PDF下载数: 83
- 施引文献: 0