湖南桃江锰矿对溶液中As(Ⅴ)和As(Ⅲ)的去除及迁移行为对比

何剑汶, 李文旭, 谌书, 刘璟. 湖南桃江锰矿对溶液中As(Ⅴ)和As(Ⅲ)的去除及迁移行为对比[J]. 环境化学, 2019, (8): 1801-1810. doi: 10.7524/j.issn.0254-6108.2018102304
引用本文: 何剑汶, 李文旭, 谌书, 刘璟. 湖南桃江锰矿对溶液中As(Ⅴ)和As(Ⅲ)的去除及迁移行为对比[J]. 环境化学, 2019, (8): 1801-1810. doi: 10.7524/j.issn.0254-6108.2018102304
HE Jianwen, LI Wenxu, CHEN Shu, LIU Jing. Comparison of removal and migration behavior of As(Ⅴ) and As(Ⅲ) in solution on Taojiang manganese ore, Hunan Province[J]. Environmental Chemistry, 2019, (8): 1801-1810. doi: 10.7524/j.issn.0254-6108.2018102304
Citation: HE Jianwen, LI Wenxu, CHEN Shu, LIU Jing. Comparison of removal and migration behavior of As(Ⅴ) and As(Ⅲ) in solution on Taojiang manganese ore, Hunan Province[J]. Environmental Chemistry, 2019, (8): 1801-1810. doi: 10.7524/j.issn.0254-6108.2018102304

湖南桃江锰矿对溶液中As(Ⅴ)和As(Ⅲ)的去除及迁移行为对比

    通讯作者: 刘璟, E-mail: liujing-vip@163.com
  • 基金项目:

    国家自然科学基金(41772367)资助.

Comparison of removal and migration behavior of As(Ⅴ) and As(Ⅲ) in solution on Taojiang manganese ore, Hunan Province

    Corresponding author: LIU Jing, liujing-vip@163.com
  • Fund Project: Supported by the National Natural Science Foundation of China (41772367).
  • 摘要: 锰氧化物对砷的去除有着环境和地球化学现实意义,本文通过批实验和柱实验研究湖南桃江锰矿对溶液中As(Ⅴ/Ⅲ)的去除行为差异和迁移行为.Langmuir吸附等温线结果表明,锰矿对As(V)和As(Ⅲ)的理论最大吸附量分别为1.32 mg·g-1和0.30 mg·g-1.As(Ⅴ/Ⅲ)在锰矿表面的动力学符合拟二阶动力学模型,表明锰矿吸附As(Ⅴ/Ⅲ)均属于化学吸附,受化学反应速率控制;反应吸附速率常数K2[As(Ⅴ)]>K2[As(Ⅲ)],表明锰矿对As(Ⅴ)的吸附速率更快.锰矿在氧化As(Ⅲ)时,溶液中As(Ⅲ)减少速率与溶液中Mn浓度变化非常一致,表明砷的氧化行为与锰矿相关.CDE和Thomas吸附模型拟合As(Ⅴ)和As(Ⅲ)的迁移行为表明,Mn2+、Al3+、PO43-和SiO32-均会降低锰矿的最大吸附量和滞留因子,其中Al3+对As(Ⅲ)的吸附具有较强的拮抗作用,最大吸附量下降至0.002 mg·g-1,对As(Ⅴ)的拮抗作用相对较弱,而PO43-和SiO32-对As(Ⅴ/Ⅲ)在柱实验中的拮抗作用相近.研究为就地处理湖南地表和地下水砷污染提供了新的处理矿物.
  • 加载中
  • [1] 胡珊, 聂麦茜, 卢金锁,等. 镉对砷在二氧化钛上吸附性能的影响[J]. 环境化学, 2011,30(4):739-746.

    HU S, NIE M Q, LU J S, et al. Cadmium effect on arsenate adsorption on TiO2[J]. Environmental Chemistry, 2011, 30(4):739-746(in Chinese).

    [2] 刘建国,卢学实,曾虹燕.水体系中砷污染及除砷方法探讨[J]. 湖南生态科学学报, 2002,8(2):119-122.

    LIU J G, LU X S, ZENG H Y. Review of arsenium pollution and removal in water environment[J]. Journal of Hunan Environment-Biological Polytechnic, 2002,8(2):119-122(in Chinese).

    [3] 胡毅鸿,周蕾,李欣,等. 石门雄黄矿区As污染研究Ⅰ——As空间分布、化学形态与酸雨溶出特性[J]. 农业环境科学学报,2015,34(8):1515-1521.

    HU Y H, ZHOU L, LI X, et al. Arsenic contamination in Shimen Realgar Mine Ⅰ:As Spatial distribution,chemical fractionations and leaching[J]. Journal of Agro-Environment Science, 2015, 34(8):1515-1521(in Chinese).

    [4] FAN L J,ZHAO F H,LIU JING, et al. Dissolution of realgar by Acidithiobacillus ferrooxidans, in the presence and absence of zerovalent iron:Implications for remediation of iron-deficient realgar tailings[J]. Chemosphere, 2018:209:381-391
    [5] SALEH T A, AGARWAL S, GUPTA V K. Synthesis of MWCNT/MnO 2 and their application for simultaneous oxidation of arsenite and sorption of arsenate[J]. Applied Catalysis B Environmental, 2011, 106(1-2):46-53.
    [6] LIU J, HE L, DONG F, et al. The role of nano-sized manganese coatings on bone char in removing arsenic(Ⅴ) from solution:Implications for permeable reactive barrier technologies[J]. Chemosphere, 2016, 153:146-154.
    [7] 杨艺琳,周孜迈,邓文娜,等. 浮石负载纳米零价铁去除水相中的砷(Ⅴ)[J]. 环境化学,2017,36(3):598-607.

    YANG Y L, ZHOU Z M, DENG W N, et al. Removal of arsenic(Ⅴ) from aqueous solutions using improved nanoscale zero-valent iron on pumice[J]. Environmental Chemistry, 2017, 36(3):598-607(in Chinese).

    [8] 聂晓,阎莉,张建锋. 高指数晶面二氧化钛对砷、锑的共吸附去除[J]. 环境化学,2018,37(2):318-326.

    NIE X, YAN L, ZHANG J F. Simultaneous removal of arsenic and antimony on high-index TiO2(HTiO2)[J]. Environmental Chemistry, 2018, 37(2):318-326(in Chinese).

    [9] GUO H, STVBEN D, BERNER Z. Removal of arsenic from aqueous solution by natural siderite and hematite[J]. Applied Geochemistry, 2007, 22(5):1039-1051.
    [10] SULLIVAN C, TYRER M, CHEESEMAN C R, et al. Disposal of water treatment wastes containing arsenic:A review[J]. Science of the Total Environment, 2010, 408(8):1770-1778.
    [11] ZHANG S, NIU H, CAI Y, et al. Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials:MnFe2O4 and CoFe2O4[J]. Chemical Engineering Journal, 2010, 158(3):599-607.
    [12] SIMEONIDIS K, GKINIS T, TRESINTSI S, ET AL. Magnetic separation of hematite-coated Fe3O4 particles used as arsenic adsorbents[J]. Chemical Engineering Journal, 2011, 168(3):1008-1015.
    [13] FENG X, WANG P, SHI Z, et al. A quantitative model for the coupled kinetics of arsenic adsorption/desorption and oxidation on manganese oxides[J]. Environmental Science & Technology Letters, 2018, 5:175-180.
    [14] HOFER W. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils[J]. Environmental Pollution, 2011, 159(12):3269-3282.
    [15] SUN J, LIAN F, LIU Z, et al. Biochars derived from various crop straws:Characterization and Cd(Ⅱ) removal potential[J]. Ecotoxicology & Environmental Safety, 2014, 106(2):226-231.
    [16] CHAKRAVARTY S, DUREJA V, BHATTACHARYYA G, et al. Removal of arsenic from groundwater using low cost ferruginous manganese ore[J]. Wawter Research, 2002, 36(3):625-632.
    [17] KAMEDA T, SUZUKI Y, YOSHIOKA T. Removal of arsenic from an aqueous solution by coprecipitation with manganese oxide[J]. Journal of Environmental Chemical Engineering, 2014, 2(4):2045-2049.
    [18] 黎跃平. 湖南省桃江锰矿贫薄矿床开采中的质量管理[J]. 中国锰业, 2001, 19(2):54-55.

    LI Y P. Quality management of mining poor and thin ore in Taojiang Mn deposit[J]. Chinas Manganese Industry, 200119(2):54-55(in Chinese).

    [19] THOMAS, HENRY C. Heterogeneous ion exchange in a flowing system[J]. Journal of the American Chemical Society, 1944, 66(10):1664-1666.
    [20] HOU J, LUO J, HU Z, et al. Tremendous effect of oxygen vacancy defects on the oxidation of arsenite to arsenate on cryptomelane-type manganese oxide[J]. Chemical Engineering Journal, 2016, 306:597-606.
    [21] HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5):451-465.
    [22] GIMÉNEZ J, MARTÍNEZ M, PABLO J D, et al. Arsenic sorption onto natural hematite, magnetite, and goethite[J]. Journal of Hazardous Materials, 2007, 141(3):575-580.
    [23] RESEARCH W. Adsorption of As(V) and As(Ⅲ) by nanocrystalline titanium dioxide.[J]. Water Research, 2005, 39(11):2327-2337.
    [24] LAFFERTY B J, GINDER-VOGEL M, SPARKS D L. Arsenite oxidation by a poorly crystalline manganese-oxide 1. Stirred-flow experiments[J]. Environmental Science & Technology, 2010, 44(22):8460-8466.
    [25] TOURNASSAT C, CHARLET L, BOSBACH D, et al. Arsenic(Ⅲ) oxidation by birnessite and precipitation of manganese(Ⅱ) arsenate[J]. Environmental Science & Technology, 2002, 36(3):493-500.
    [26] HAMMARSTROM J M, SIBRELL P L, BELKIN H E. Characterization of limestone reacted with acid-mine drainage in a pulsed limestone bed treatment system at the Friendship Hill National Historical Site, Pennsylvania, USA[J]. Applied Geochemistry, 2003, 18(11):1705-1721.
    [27] SANTOMARTINO S, WEBB J A. Estimating the longevity of limestone drains in treating acid mine drainage containing high concentrations of iron[J]. Applied Geochemistry, 2007, 22(11):2344-2361.
    [28] YANG J K, SONG K H, KIM B K, et al. Arsenic removal by iron and manganese coated sand[J]. Water Science & Technology, 2007, 56(7):161-169.
    [29] BOWMAN R S. Aqueous environmental geochemistry[J]. Eos Transactions American Geophysical Union, 2013, 78(50):586-586.
    [30] MANNING B A, FENDORE S E, BOSTICK B, et al. Arsenic(Ⅲ) oxidation and arsenic(Ⅴ) adsorption reactions on synthetic birnessite[J]. Environmental Science & Technology, 2002, 36(5):976-981.
    [31] LIN T F, WU J K. Adsorption of arsenite and arsenate within activated alumina grains:Equilibrium and kinetics[J]. Water Research, 2001, 35(8):2049-2057.
  • 加载中
计量
  • 文章访问数:  1567
  • HTML全文浏览数:  1567
  • PDF下载数:  83
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-10-23
何剑汶, 李文旭, 谌书, 刘璟. 湖南桃江锰矿对溶液中As(Ⅴ)和As(Ⅲ)的去除及迁移行为对比[J]. 环境化学, 2019, (8): 1801-1810. doi: 10.7524/j.issn.0254-6108.2018102304
引用本文: 何剑汶, 李文旭, 谌书, 刘璟. 湖南桃江锰矿对溶液中As(Ⅴ)和As(Ⅲ)的去除及迁移行为对比[J]. 环境化学, 2019, (8): 1801-1810. doi: 10.7524/j.issn.0254-6108.2018102304
HE Jianwen, LI Wenxu, CHEN Shu, LIU Jing. Comparison of removal and migration behavior of As(Ⅴ) and As(Ⅲ) in solution on Taojiang manganese ore, Hunan Province[J]. Environmental Chemistry, 2019, (8): 1801-1810. doi: 10.7524/j.issn.0254-6108.2018102304
Citation: HE Jianwen, LI Wenxu, CHEN Shu, LIU Jing. Comparison of removal and migration behavior of As(Ⅴ) and As(Ⅲ) in solution on Taojiang manganese ore, Hunan Province[J]. Environmental Chemistry, 2019, (8): 1801-1810. doi: 10.7524/j.issn.0254-6108.2018102304

湖南桃江锰矿对溶液中As(Ⅴ)和As(Ⅲ)的去除及迁移行为对比

    通讯作者: 刘璟, E-mail: liujing-vip@163.com
  • 1. 西南科技大学, 固体废物处理与资源化教育部重点实验室, 绵阳, 621010;
  • 2. 西南大学, 资源与环境学院, 重庆, 400700
基金项目:

国家自然科学基金(41772367)资助.

摘要: 锰氧化物对砷的去除有着环境和地球化学现实意义,本文通过批实验和柱实验研究湖南桃江锰矿对溶液中As(Ⅴ/Ⅲ)的去除行为差异和迁移行为.Langmuir吸附等温线结果表明,锰矿对As(V)和As(Ⅲ)的理论最大吸附量分别为1.32 mg·g-1和0.30 mg·g-1.As(Ⅴ/Ⅲ)在锰矿表面的动力学符合拟二阶动力学模型,表明锰矿吸附As(Ⅴ/Ⅲ)均属于化学吸附,受化学反应速率控制;反应吸附速率常数K2[As(Ⅴ)]>K2[As(Ⅲ)],表明锰矿对As(Ⅴ)的吸附速率更快.锰矿在氧化As(Ⅲ)时,溶液中As(Ⅲ)减少速率与溶液中Mn浓度变化非常一致,表明砷的氧化行为与锰矿相关.CDE和Thomas吸附模型拟合As(Ⅴ)和As(Ⅲ)的迁移行为表明,Mn2+、Al3+、PO43-和SiO32-均会降低锰矿的最大吸附量和滞留因子,其中Al3+对As(Ⅲ)的吸附具有较强的拮抗作用,最大吸附量下降至0.002 mg·g-1,对As(Ⅴ)的拮抗作用相对较弱,而PO43-和SiO32-对As(Ⅴ/Ⅲ)在柱实验中的拮抗作用相近.研究为就地处理湖南地表和地下水砷污染提供了新的处理矿物.

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回