胡敏素和磷酸盐联用对土壤中铜的钝化

陈玉萍, 王雅辉, 杨子鹏, 符待君, 王雅兰, 陈丹妮, 马丹, 李中阳, 吕文英, 刘国光. 胡敏素和磷酸盐联用对土壤中铜的钝化[J]. 环境化学, 2019, (8): 1793-1800. doi: 10.7524/j.issn.0254-6108.2018101601
引用本文: 陈玉萍, 王雅辉, 杨子鹏, 符待君, 王雅兰, 陈丹妮, 马丹, 李中阳, 吕文英, 刘国光. 胡敏素和磷酸盐联用对土壤中铜的钝化[J]. 环境化学, 2019, (8): 1793-1800. doi: 10.7524/j.issn.0254-6108.2018101601
CHEN Yuping, WANG Yahui, YANG Zipeng, FU Daijun, WANG Yalan, CHEN Danni, MA Dan, LI Zhongyang, LYU Wenying, LIU Guoguang. Passivation of Cu by humin combined with phosphate in soils[J]. Environmental Chemistry, 2019, (8): 1793-1800. doi: 10.7524/j.issn.0254-6108.2018101601
Citation: CHEN Yuping, WANG Yahui, YANG Zipeng, FU Daijun, WANG Yalan, CHEN Danni, MA Dan, LI Zhongyang, LYU Wenying, LIU Guoguang. Passivation of Cu by humin combined with phosphate in soils[J]. Environmental Chemistry, 2019, (8): 1793-1800. doi: 10.7524/j.issn.0254-6108.2018101601

胡敏素和磷酸盐联用对土壤中铜的钝化

    通讯作者: 吕文英, E-mail: lvwy612@163.com
  • 基金项目:

    广东省科技计划项目(2017A020216010)资助.

Passivation of Cu by humin combined with phosphate in soils

    Corresponding author: LYU Wenying, lvwy612@163.com
  • Fund Project: Supported by the Science and Technology Plan Project of Guangdong Province (2017A020216010).
  • 摘要: 本文研究了胡敏素和磷酸二氢钾(KH2PO4)单独施用以及胡敏素和KH2PO4联用等不同情况下,污染土壤中重金属Cu形态的动态变化;采用TCLP(Toxic characteristic leaching procedure)法评价了不同配比钝化剂对污染土壤中Cu的钝化作用,以土壤中典型的根系分泌物酒石酸作为重金属解吸剂来模拟研究土壤中小分子有机酸对Cu钝化后的产物形态变化的影响.结果表明,土壤添加胡敏素和KH2PO4能够不同程度地升高土壤pH值,二者联用使酸性土壤pH值从4.90升高到5.22-5.30;添加不同比例的胡敏素和KH2PO4均降低了土壤TCLP提取态和酸提取态Cu含量,且P/Cu摩尔比为4:1时,土壤TCLP提取态和酸提取态Cu含量分别降低了67.8 mg·kg-1和104.5 mg·kg-1,而残渣态的Cu含量增加了17.3 mg·kg-1.胡敏素和KH2PO4联用的效果显著优于二者单独使用;土壤溶液中存在的根系分泌物成分酒石酸对土壤中的Cu具有解吸作用,解吸率随酒石酸浓度增加而提高.胡敏素和KH2PO4的联用减少了Cu的解吸,降低了Cu的迁移性.
  • 加载中
  • [1] TU C, LIU Y, WEI J, et al. Characterization and mechanism of copper biosorption by a highly copper-resistant fungal strain isolated from copper-polluted acidic orchard soil[J]. Environmental Science & Pollution Research, 2018:25(25):24965-24974.
    [2] LUO Y, TU C. Twenty Years of Research and Development on Soil Pollution and Remediation in China[M]. Beijing, Science Press, 2018.
    [3] GANG W, KANG H, ZHANG X, et al. A critical review on the bio-removal of hazardous heavy metals from contaminated soils:Issues, progress, eco-environmental concerns and opportunities[J]. Journal of Hazardous Materials, 2010, 174(1):1-8.
    [4] NEBBIOSO A, VINCI G, DROSOS M, et al. Unveiling the molecular composition of the unextractable soil organic fraction (humin) by humeomics[J]. Biology & Fertility of Soils, 2015, 51(4):443-451.
    [5] WANG Y, LI L, ZOU X, et al. Impact of Humin on Soil Adsorption and Remediation of Cd(Ⅱ), Pb(Ⅱ), and Cu(Ⅱ)[J]. Journal of Soil Contamination, 2016, 25(6):700-715.
    [6] 王雅辉,邹雪刚,舒冉君,等. 胡敏素对Pb2+吸附的响应面优化及机理[J]. 中国环境科学, 2017, 37(5):1814-1822.

    WANG Y H, ZOU X G,SHU R J, et al. Adsorption of Pb(Ⅱ) from aqueous solutions by humin:Optimization and mechanism[J]. Chinese Environmental Science, 2017, 37(5):1814-1822(in Chinese).

    [7] 王雅辉. 胡敏素对土壤中Cu、Pb的钝化作用研究[D]. 广州:广东工业大学, 2017. WANG Y H. Passivation of Cu and Pb in soils by humin[D].Guangzhou:Guangdong University of Technology,2017(in Chinese).
    [8] CONTRERAS C, DE L R G, PERALTA-VIDEA J R, et al. Lead adsorption by silica-immobilized humin under flow and batch conditions:assessment of flow rate and calcium and magnesium interference[J]. Journal of Hazardous Materials, 2006, 133(1):79-84.
    [9] APPEL C, MA L Q, RHUE R D, et al. Sequential sorption of lead and cadmium in three tropical soils[J]. Environmental Pollution, 2008, 155(1):132-140.
    [10] CAO X, WAHBI A, MA L, et al. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid[J]. Journal of Hazardous Materials, 2009, 164(2):555-564.
    [11] ZHANG J, WANG S, WANG Q, et al. First determination of Cu adsorption on soil humin[J]. Environmental Chemistry Letters, 2013, 11(1):41-46.
    [12] REN Z, SIVRY Y, THARAUD M, et al. Speciation and reactivity of lead and zinc in heavily and poorly contaminated soils:Stable isotope dilution, chemical extraction and model views[J]. Environmental Pollution, 2017, 225:654-662.
    [13] HUANG G, SU X, RIZWAN M S, et al. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils[J]. Environmental Science and Pollution Research, 2016, 23(16):16845-16856.
    [14] KNOX A S, KAPLAN D I, PALLER M H. Phosphate sources and their suitability for remediation of contaminated soils[J]. Science of the Total Environment, 2006, 357(1):271-279.
    [15] CHEN S, XU M, MA Y, et al. Evaluation of different phosphate amendments on availability of metals in contaminated soil[J]. Ecotoxicol Environ Saf, 2007, 67(2):278-285.
    [16] SHAHID M, XIONG T, MASOOD N, et al. Influence of plant species and phosphorus amendments on metal speciation and bioavailability in a smelter impacted soil:A case study of food-chain contamination[J]. Journal of Soils & Sediments, 2014, 14(4):655-665.
    [17] LIU R, ZHAO D. In situ immobilization of Cu(Ⅱ) in soils using a new class of iron phosphate nanoparticles[J]. Chemosphere, 2007, 68(10):1867-1876.
    [18] 钟振宇,赵庆圆,陈灿,等. 腐殖酸和含磷物质对模拟铅污染农田土壤的钝化效应[J]. 环境化学, 2018,37(6):1327-1336.

    ZHONG Z Y, ZHAO Q Y,CHEN C, et al. Passivation of simulated lead contaminated farml and soil using humic acid and phosphate[J]. Environmental Chemistry,2018,37(6):1327-1336(in Chinese).

    [19] WANG Y, LI L, ZOU X, et al. Impact of humin on soil adsorption and remediation of Cd(Ⅱ), Pb(Ⅱ), and Cu(Ⅱ)[J]. Soil and Sediment Contamination, 2016, 25(6):700-715.
    [20] SAYADI M H, REZAEI M R, REZAEI A. Fraction distribution and bioavailability of sediment heavy metals in the environment surrounding MSW landfill:A case study[J]. Environmental Monitoring and Assessment, 2015, 187(1):4110.
    [21] CHEN D, FENG H, LI J. Graphene oxide:Preparation, functionalization, and electrochemical applications[J]. Chemical Reviews, 2012, 112(11):6027-6053.
    [22] CHEN B, ZHAO H, CHEN S, et al. A magnetically recyclable chitosan composite adsorbent functionalized with EDTA for simultaneous capture of anionic dye and heavy metals in complex wastewater[J]. Chemical Engineering Journal, 2019, 356:69-80.
    [23] REFAT M, MOHAMED G G, IBRAHIM M S, et al. Synthesis and characterization of coordination behavior of diclofenac sodium drug toward Hg(Ⅱ), Pb(Ⅱ), and Sn(Ⅱ) metal ions:Chelation effect on their thermal stability and biological activity[J]. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 2014, 44(2):161-170.
    [24] ADEEYO R O, BELLO O S. Use of composite sorbents for the removal of copper (Ⅱ) ions from aqueous solution[J]. Pakistan Journal of Analytical & Environmental Chemistry, 2015, 15(2):1-12.
    [25] SHARMA P, HUSSAIN N, BORAH D J, et al. Kinetics and adsorption behavior of the methyl blue at the graphene oxide/reduced graphene oxide nanosheet-water interface:A comparative study[J]. Journal of Chemical & Engineering Data, 2013, 58(12):3477-3488.
    [26] CHEN H, DOU J, XU H. The effect of low-molecular-weight organic-acids(LMWOAs)on treatment of chromium-contaminated soils by compost-phytoremediation:Kinetics of the chromium release and fractionation[J]. Journal of Environmental Sciences, 2018, 70(8):48-56..
    [27] 王秀丽,梁成华,马子惠,等. 施用磷酸盐和沸石对土壤镉形态转化的影响[J]. 环境科学, 2015, 36(4):1437-1444.

    WANG X L, LIANG C H,MA Z H, et al. Effects of phosphate and zeolite on the transformation of cd speciation in soil[J]. Journal of Environmental Sciences, 2015, 36(4):1437-1444(in Chinese).

    [28] DU, YAN, HU, et al. Affects of mining activities on Cd pollution to the paddy soils and rice-grain in Hunan Province, Central South China[J]. Environmental Monitoring & Assessment, 2013, 185(12):9843-9856.
    [29] GAO X, CHEN C T A. Heavy metal pollution status in surface sediments of the coastal Bohai Bay[J]. Water Research, 2012, 46(6):1901-1911.
    [30] WANG B, XIE Z, CHEN J, et al. Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L.) in a mining tailing contaminated soil[J]. Journal of Environmental Sciences, 2008, 20(9):1109-1117.
    [31] YANG Y, CHEN R, FU G, et al. Phosphate deprivation decreases cadmium (Cd) uptake but enhances sensitivity to Cd by increasing iron (Fe) uptake and inhibiting phytochelatins synthesis in rice (Oryza sativa)[J]. Acta Physiologiae Plantarum, 2016, 38(1):28.
    [32] STROBEL B W. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution-a review[J]. Geoderma, 2001, 99(3):169-198.
    [33] DING Y Z, SONG Z G, FENG R W, et al. Interaction of organic acids and pH on multi-heavy metal extraction from alkaline and acid mine soils[J]. International Journal of Environmental Science & Technology, 2014, 11(1):33-42.
    [34] PONGE J. Plant-soil feedbacks mediated by humus forms:A review[J]. Soil Biology and Biochemistry, 2013, 57:1048-1060.
    [35] KAUR C, SELVAKUMAR G, GANESHAMURTHY A N. Organic Acids in the Rhizosphere:Their Role in Phosphate Dissolution[M]. Springer India, 2016.
  • 加载中
计量
  • 文章访问数:  1781
  • HTML全文浏览数:  1781
  • PDF下载数:  32
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-10-16
陈玉萍, 王雅辉, 杨子鹏, 符待君, 王雅兰, 陈丹妮, 马丹, 李中阳, 吕文英, 刘国光. 胡敏素和磷酸盐联用对土壤中铜的钝化[J]. 环境化学, 2019, (8): 1793-1800. doi: 10.7524/j.issn.0254-6108.2018101601
引用本文: 陈玉萍, 王雅辉, 杨子鹏, 符待君, 王雅兰, 陈丹妮, 马丹, 李中阳, 吕文英, 刘国光. 胡敏素和磷酸盐联用对土壤中铜的钝化[J]. 环境化学, 2019, (8): 1793-1800. doi: 10.7524/j.issn.0254-6108.2018101601
CHEN Yuping, WANG Yahui, YANG Zipeng, FU Daijun, WANG Yalan, CHEN Danni, MA Dan, LI Zhongyang, LYU Wenying, LIU Guoguang. Passivation of Cu by humin combined with phosphate in soils[J]. Environmental Chemistry, 2019, (8): 1793-1800. doi: 10.7524/j.issn.0254-6108.2018101601
Citation: CHEN Yuping, WANG Yahui, YANG Zipeng, FU Daijun, WANG Yalan, CHEN Danni, MA Dan, LI Zhongyang, LYU Wenying, LIU Guoguang. Passivation of Cu by humin combined with phosphate in soils[J]. Environmental Chemistry, 2019, (8): 1793-1800. doi: 10.7524/j.issn.0254-6108.2018101601

胡敏素和磷酸盐联用对土壤中铜的钝化

    通讯作者: 吕文英, E-mail: lvwy612@163.com
  • 广东工业大学环境科学与工程学院, 广州, 510006
基金项目:

广东省科技计划项目(2017A020216010)资助.

摘要: 本文研究了胡敏素和磷酸二氢钾(KH2PO4)单独施用以及胡敏素和KH2PO4联用等不同情况下,污染土壤中重金属Cu形态的动态变化;采用TCLP(Toxic characteristic leaching procedure)法评价了不同配比钝化剂对污染土壤中Cu的钝化作用,以土壤中典型的根系分泌物酒石酸作为重金属解吸剂来模拟研究土壤中小分子有机酸对Cu钝化后的产物形态变化的影响.结果表明,土壤添加胡敏素和KH2PO4能够不同程度地升高土壤pH值,二者联用使酸性土壤pH值从4.90升高到5.22-5.30;添加不同比例的胡敏素和KH2PO4均降低了土壤TCLP提取态和酸提取态Cu含量,且P/Cu摩尔比为4:1时,土壤TCLP提取态和酸提取态Cu含量分别降低了67.8 mg·kg-1和104.5 mg·kg-1,而残渣态的Cu含量增加了17.3 mg·kg-1.胡敏素和KH2PO4联用的效果显著优于二者单独使用;土壤溶液中存在的根系分泌物成分酒石酸对土壤中的Cu具有解吸作用,解吸率随酒石酸浓度增加而提高.胡敏素和KH2PO4的联用减少了Cu的解吸,降低了Cu的迁移性.

English Abstract

参考文献 (35)

返回顶部

目录

/

返回文章
返回