天津近郊农田土壤重金属风险评价及空间主成分分析

纪冬丽, 曾琬晴, 张新波, 张竞, 王庆国, 张万军, 邓令, 杨光辉, 吴思睿. 天津近郊农田土壤重金属风险评价及空间主成分分析[J]. 环境化学, 2019, (9): 1955-1965. doi: 10.7524/j.issn.0254-6108.2018111201
引用本文: 纪冬丽, 曾琬晴, 张新波, 张竞, 王庆国, 张万军, 邓令, 杨光辉, 吴思睿. 天津近郊农田土壤重金属风险评价及空间主成分分析[J]. 环境化学, 2019, (9): 1955-1965. doi: 10.7524/j.issn.0254-6108.2018111201
JI Dongli, ZENG Wanqing, ZHANG Xinbo, ZHANG Jing, WANG Qingguo, ZHANG Wanjun, DENG Ling, YANG Guanghui, WU Sirui. Ecological risk assessment and principal component analysis of heavy metals in suburban farmland soils of Tianjin[J]. Environmental Chemistry, 2019, (9): 1955-1965. doi: 10.7524/j.issn.0254-6108.2018111201
Citation: JI Dongli, ZENG Wanqing, ZHANG Xinbo, ZHANG Jing, WANG Qingguo, ZHANG Wanjun, DENG Ling, YANG Guanghui, WU Sirui. Ecological risk assessment and principal component analysis of heavy metals in suburban farmland soils of Tianjin[J]. Environmental Chemistry, 2019, (9): 1955-1965. doi: 10.7524/j.issn.0254-6108.2018111201

天津近郊农田土壤重金属风险评价及空间主成分分析

    通讯作者: 纪冬丽, E-mail: donglijihappy@163.com
  • 基金项目:

    天津市教委科研计划项目(2018KJ170)资助.

Ecological risk assessment and principal component analysis of heavy metals in suburban farmland soils of Tianjin

    Corresponding author: JI Dongli, donglijihappy@163.com
  • Fund Project: Supported by Education Commission Scientific Research Project in Tianjin, China (2018KJ170).
  • 摘要: 以天津市近郊西青区主要农产品生产基地表层土壤(0-20 cm)作为研究对象,分析了V、Cr、Ni、Cu、Zn、As、Se、Cd、Pb共9种重金属含量及空间分布特征.分别采用地累积指数法及Hakanson潜在生态危害指数法,对农田土壤重金属污染程度及生态风险进行评价;同时利用多元统计分析方法,揭示了研究区农田土壤重金属各元素之间的相关性及污染来源.结果表明,研究区农田土壤各重金属含量偏低,呈轻度污染;但在靠近居住区、高速公路、铁路或小型畜牧厂(已关停)的部分点位中Zn或Cr存在明显富集,污染等级为中度或严重;各元素的生态危害指数大小依次为ER(As) > ER(Cu) > ER(Pb) > ER(Zn) > ER(Ni) > ER(Cr) > ER(V),生态危害程度均为轻微;多元统计分析结果显示,灌溉水对As和Pb的影响较显著,农作物对As的影响较显著;Cr和Ni来源相似,主要受成土母质的影响;Pb、Zn、Cu等3种元素来源相似,主要来自于附近公路交通所排放的污染物;V和As的来源主要与历史工业污染的积累相关.
  • 加载中
  • [1] 陈卫平, 杨阳, 谢天, 等. 中国农田土壤重金属污染防治挑战与对策[J]. 土壤学报, 2018, 55(2):261-272.

    CHEN W P, YANG Y, XIE T, et al. Challenges and countermeasures for heavy metal pollution control in farmlands of china[J]. Acta Pedologica Sinica, 2018, 55(2):261-272(in Chinese).

    [2] 王莹, 陈玉成, 李章平. 我国城市土壤重金属的污染格局分析[J]. 环境化学, 2012, 31(6):763-770.

    WANG Y, CHEN Y C, LI Z P. Contamination pattern of heavy metals in Chinese urban soils[J]. Environmental Chemistry, 2012, 31(6):763-770(in Chinese).

    [3] 王斌, 张震. 天津近郊农田土壤重金属污染特征及潜在生态风险评价[J].中国环境监测, 2012, 28(3):23-26.

    WANG B, ZHANG Z. Characteristics and potential ecological risk assessment of heavy metal pollution in farmland near Tianjin[J]. Environmental Monitoring in China, 2012, 28(3):23-26(in Chinese).

    [4] 曹淑萍. 重金属污染元素在天津土壤剖面中的纵向分布特征[J]. 地质找矿论丛, 2004, 19(4):270-274.

    CAO S P. Vertical distribution of heavy metal pollutant in soil profile of Tianjin[J]. Contributions to Geology and Mineral Resources Research, 2004, 19(4):270-274(in Chinese).

    [5] 刘丹, 赵永红, 周丹, 等. 赣南某钨矿区土壤重金属污染生态风险评价[J]. 环境化学, 2017, 36(7):1556-1567.

    LIU D, ZHAN Y H, ZHOU D, et al. Ecological risk assessment of heavy metals pollution in a tungsten mine soil in south of Jiangxi Province[J]. Environmental Chemistry, 2017, 36(7):1556-1567(in Chinese).

    [6] 张文新, 陈勇, 齐誉, 等. 新疆玛河流域土壤和蔬菜汞分布特征与生态、人体健康风险评价[J]. 环境化学, 2017,36(11):2441-2450.

    ZHANG W X, CHEN Y, QI Y, et al. Mercury pollution and ecology, human health risk in soil and vegetables of Manasi River Basin, Xinjiang[J]. Environmental Chemistry, 2017, 36(11):2441-2450(in Chinese).

    [7] 郭朝晖, 涂卫佳, 彭驰, 等. 典型铅锌矿区河流沿岸农田土壤重金属分布特征及潜在生态风险评价[J]. 农业环境科学学报, 2017, 36(10):2029-2038.

    GUO C H, TU W J, PENG C, et al. Distribution characteristics and potential ecological risk assessment of heavy metals in paddy soil along both sides of river from typical lead/zinc mine area[J]. Journal of Agro-Environment Science, 2017, 36(10):2029-2038(in Chinese).

    [8] TÍMEA V, GYÖRGY S, ZOLTÁN C, et al. The spatial distribution pattern of heavy metal concentrations in urban soils:A study of anthropogenic effects in Berehove, Ukraine[J]. Central European Journal of Geosciences, 2014, 6(3):330-343.
    [9] WANG Z, DARILEK J L, ZHAO Y, et al. Defining soil geochemical baselines at small scales using geochemical common factors and soil organic matter as normalizers[J]. Journal of Soils and Sediments, 2011, 11(1):3-14.
    [10] WANG Y, LI F, SONG J, et al. Stabilization of Cd-, Pb-, Cu-and Zn-contaminated calcareous agricultural soil using red mud:A field experiment[J]. Environmental Geochemistry & Health, 2018, 40(5):2143-2153.
    [11] LUO X S, YU S, ZHU Y G., et al. Trace metal contamination in urban soils of China[J]. Science of the Total Environment, 2012, 421-422(3):17-30.
    [12] XUE S, SHI L, WU C, et al. Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines[J]. Environmental Research, 2017, 156:23-30.
    [13] SHARMA S, NAGPAL A K, KAUR I. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs[J]. Food Chemistry, 2018, 255:15-22.
    [14] JIANG R, WANG M, CHEN W, et al. Ecological risk evaluation of combined pollution of herbicide siduron and heavy metals in soils.[J]. Science of the Total Environment, 2018, 626:1047-1056.
    [15] LIU Y P, YU C Y. A study of the spatial distribution and genesis of Cd in soil of Chengdu Plain[J]. Geology in China, 2012, 39(3):804-810.
    [16] GAO L, CHEN J, TANG C, et al. Distribution, migration and potential risk of heavy metals in the Shima River catchment area, South China[J]. Environmental Science Processes & Impacts, 2015, 17(10):1769-1782.
    [17] OKIN G. S, PARSONS A J, WAINWRIGHT J, et al. Do changes in connectivity explain desertification?[J]. Bioscience, 2009, 59(3):237-244.
    [18] GAMBLE A V, GIVENS A K, SPARKS D L. Arsenic speciation and availability in orchard soils historically contaminated with lead arsenate[J]. Journal of Environmental Quality, 2018, 47(1):121-128.
    [19] KLINGMÜLLER K, METZGER S, ABDELKADER M, et al. Revised mineral dust emissions in the atmospheric chemistry-climate model EMAC (MESSy 2.52 DU_Astitha1 KKDU2017 patch)[J]. Geoscientific Model Development, 2018, 11(3):989-1008.
    [20] FÉLIX O I, CSAVINA J, FIELD J, et al. Use of lead isotopes to identify sources of metal and metalloid contaminants in atmospheric aerosol from mining operations[J]. Chemosphere, 2015, 122:219-226.
    [21] CAPPELLETTI N, ASTOVIZA M, MORRONE M, et al. Urban geochemistry and potential human health risks in the Metropolitan Area of Buenos Aires:PAHs and PCBs in soil, street dust, and bulk deposition[J]. Environmental Geochemistry & Health, 2019,41(2):699-713.
    [22] LIU Y R, HE Z Y, YANG Z M, et al. Variability of heavy metal content in soils of typical tibetan grasslands[J]. Rsc Advances, 2016, 6(107):105398-105405.
    [23] XIAO A, OUYANG Y, LI W C, et al. Effect of organic manure on Cd and As accumulation in brown rice and grain yield in Cd-As-contaminated paddy fields[J]. Environment Science Pollution Research International, 2017, 24(10):9111-9121.
    [24] LIN M, LI S, SUN X, et al. Heavy metal contamination in green space soils of Beijing, China[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2017, 68(4):1-10.
    [25] 高新星. 高血压病的代谢组学研究[D]. 沈阳:沈阳药科大学, 2008. GAO X X. Metabolomics of hypertension[D]. Shenyang:Shenyang Pharmaceutical University, 2008(in Chinese).
    [26] ÇEVIK F, GÖKSU M Z L, DERICI O B, et al. An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses[J]. Environmental Monitoring & Assessment, 2009, 152(1-4):309-317.
    [27] HAKANSON L. An ecological risk index for aquatic pollution control.A sedimentological approach[J]. Water Research, 1980, 14(8):975-1001.
    [28] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2):112-115.

    XU Z Q, NI S J, GENG X G, et al. Calculat ion of heavy metals' toxicity coefficient in the evaluation of potent ial ecological risk index[J]. Environmental Science & Technology, 2008, 31(2):112-115(in Chinese).

    [29] JIANG X, LU W X, ZHAO H Q, et al. Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump[J]. Natural Hazards and Earth System Sciences, 2014,14(6):1599-1610.
    [30] 成杭新, 李括, 李敏, 等. 中国城市土壤化学元素的背景值与基准值[J]. 地学前缘, 2014, 21(3):265-306.

    CHENG H X, LI K, LIN M, et al.Geochemical background and baseline value of chemical elements in urban soil in China[J]. Earth Science Frontiers, 2014, 21(3):265-306(in Chinese).

    [31] LI X, ZHAO Z, YUAN Y, et al. Heavy metal accumulation and its spatial distribution in agricultural soils:Evidence from Hunan Province, China[J]. Rsc Advances, 2018, 8(19):10665-10672.
    [32] 赵津, 刘汝海, 金嘉欣, 等. 子牙新河下游湿地土壤重金属垂直分布及形态特征[J]. 环境化学, 2016, 35(10):2044-2050.

    ZHAO J, LIU R H, JIN J X, et al. Vertical distribution and speciation characteristics of heavy metals in wetlands soils of Ziyaxin River downstream[J]. Environmental Chemistry, 2016, 35(10):2044-2050(in Chinese).

    [33] SHENG J, WANG X, TIAN L, et al. Heavy metals of the Tibetan top soils[J]. Environmental Science & Pollution Research, 2012, 19(8):3362-3370.
    [34] 虞敏达, 张慧, 何小松, 等. 典型农业活动区土壤重金属污染特征及生态风险评价[J]. 环境工程学报, 2016, 10(3):1500-1507.

    YU M D, ZHANG H, HE X S, et al. Pollution characteristics and ecological risk assessment of heavy metals in typical agricultural soils[J]. Chinese Journal of Environmental Engineering, 2016, 10(3):1500-1507(in Chinese).

    [35] HOJATI S. Pollution assessment and source apportionment of arsenic, lead and copper in selected soils of Khuzestan Province, Southwestern Iran[J]. Arabian Journal of Geosciences, 2017, 10(23):1-13.
  • 加载中
计量
  • 文章访问数:  1860
  • HTML全文浏览数:  1860
  • PDF下载数:  146
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-11-12
纪冬丽, 曾琬晴, 张新波, 张竞, 王庆国, 张万军, 邓令, 杨光辉, 吴思睿. 天津近郊农田土壤重金属风险评价及空间主成分分析[J]. 环境化学, 2019, (9): 1955-1965. doi: 10.7524/j.issn.0254-6108.2018111201
引用本文: 纪冬丽, 曾琬晴, 张新波, 张竞, 王庆国, 张万军, 邓令, 杨光辉, 吴思睿. 天津近郊农田土壤重金属风险评价及空间主成分分析[J]. 环境化学, 2019, (9): 1955-1965. doi: 10.7524/j.issn.0254-6108.2018111201
JI Dongli, ZENG Wanqing, ZHANG Xinbo, ZHANG Jing, WANG Qingguo, ZHANG Wanjun, DENG Ling, YANG Guanghui, WU Sirui. Ecological risk assessment and principal component analysis of heavy metals in suburban farmland soils of Tianjin[J]. Environmental Chemistry, 2019, (9): 1955-1965. doi: 10.7524/j.issn.0254-6108.2018111201
Citation: JI Dongli, ZENG Wanqing, ZHANG Xinbo, ZHANG Jing, WANG Qingguo, ZHANG Wanjun, DENG Ling, YANG Guanghui, WU Sirui. Ecological risk assessment and principal component analysis of heavy metals in suburban farmland soils of Tianjin[J]. Environmental Chemistry, 2019, (9): 1955-1965. doi: 10.7524/j.issn.0254-6108.2018111201

天津近郊农田土壤重金属风险评价及空间主成分分析

    通讯作者: 纪冬丽, E-mail: donglijihappy@163.com
  • 1. 天津城建大学环境与市政工程学院, 天津, 300384;
  • 2. 中国地质调查局天津地质调查中心, 天津, 300170
基金项目:

天津市教委科研计划项目(2018KJ170)资助.

摘要: 以天津市近郊西青区主要农产品生产基地表层土壤(0-20 cm)作为研究对象,分析了V、Cr、Ni、Cu、Zn、As、Se、Cd、Pb共9种重金属含量及空间分布特征.分别采用地累积指数法及Hakanson潜在生态危害指数法,对农田土壤重金属污染程度及生态风险进行评价;同时利用多元统计分析方法,揭示了研究区农田土壤重金属各元素之间的相关性及污染来源.结果表明,研究区农田土壤各重金属含量偏低,呈轻度污染;但在靠近居住区、高速公路、铁路或小型畜牧厂(已关停)的部分点位中Zn或Cr存在明显富集,污染等级为中度或严重;各元素的生态危害指数大小依次为ER(As) > ER(Cu) > ER(Pb) > ER(Zn) > ER(Ni) > ER(Cr) > ER(V),生态危害程度均为轻微;多元统计分析结果显示,灌溉水对As和Pb的影响较显著,农作物对As的影响较显著;Cr和Ni来源相似,主要受成土母质的影响;Pb、Zn、Cu等3种元素来源相似,主要来自于附近公路交通所排放的污染物;V和As的来源主要与历史工业污染的积累相关.

English Abstract

参考文献 (35)

返回顶部

目录

/

返回文章
返回