基于多表面形态模型的土壤镉在小白菜中的富集效应
Accumulation of Cd in soil-cabbage system based on multi-surface speciation model
-
摘要: 基于土壤理化性质和热力学化学平衡的多表面形态模型(multi-surface speciation model,MSM)近年来已成功被应用于描述多种痕量元素在土壤固/液相间的分配,但在土壤-植物系统中的应用尚不多见.本文采用室内盆栽实验,调查了我国6种代表性土壤中Cd(Ⅱ)在小白菜中的生物富集情况,首先比较了5种化学提取方法(总Cd、CaCl2、HNO3、Mehlich-3和BCR)测定的有效态Cd与小白菜中Cd富集量之间的相关性,其次基于MSM预测土壤中溶解态Cd(Ⅱ)浓度并与Cd在白菜中富集量进行了相关性分析,同时考察了不同模型架构下模型对相关性的影响.结果表明,MSM预测的土壤中溶解态Cd浓度与小白菜中Cd富集量之间有较好的相关性,大部分模型架构下优于化学提取法,说明MSM一定程度上反映了土壤理化性质对Cd生物有效性的影响.由于MSM在计算过程中基于热力学参数,因此具有很好的外延性,说明其在土壤-植物系统中重金属生物有效性和风险评价方面具有较大的潜力.Abstract: In recent years, Multi-surface Speciation Model (MSM) based on thermodynamic chemical equilibrium and soil properties has been applied successfully in the description of the solid-solution partition of some describe trace elements in soils. However, its application in the soil-plant system has not been fully explored. In this study, pot experiments were carried out to investigate Cd(Ⅱ) accumulation in soil-cabbage system using 6 soils with various properties from China. Firstly, the correlation of bioavailable Cd(Ⅱ) in soil and the accumulation amount in cabbage was measured by five chemical extraction methods in order to evaluate the feasibility. Secondly, the relationship of soluble Cd(Ⅱ) concentration in soil and the bioaccumulation Cd(Ⅱ) in cabbage was analyzed by the prediction of MSM. Meanwhile, the study also explored the influence of different model composition. The results demonstrate that the dissolved Cd(Ⅱ) predicted by MSM in most composition showed better correlation with Cd in cabbage than chemical extraction methods, indicating the MSM can assess the effect of soil properties on Cd bioavailability. Because MSM calculation is based on thermodynamic parameters, it is easy to be extrapolated to other soil system. The feasibility of MSM in the soil-plant system makes it a promising tool in soil risk assessment for heavy metals.
-
Key words:
- soil /
- cadmium /
- bioavailability /
- chemical extraction /
- multi-surface speciation model
-
-
[1] 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9):1689-1692. CHEN N C, ZHENG Y J, HE X F, et al. Analysis of the bulletin of national soil pollution survey[J]. Journal of Agro-Environment Science, 2017, 36(9):1689-1692(in Chinese).
[2] RIZWAN M, ALI S, ADREES M, et al. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables[J]. Chemosphere, 2017, 182:90-105. [3] ZHAO F J, MA Y, ZHU Y G, et al. Soil contamination in China:Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2):750-759. [4] MCLAUGHLIN M J, ZARCINAS B A, STEVENS D P, et al. Soil testing for heavy metals[J]. Communications in Soil Science and Plant Analysis, 2008, 31(11-14):1661-1700. [5] DING C, ZHANG T, WANG X, et al. prediction model for cadmium transfer from soil to carrot (Daucus carota L.) and its application to derive soil thresholds for food safety[J]. Journal of Agricultural and Food Chemistry, 2013, 61(43):10273-10282. [6] PAN Y, BONTEN L T C, KOOPMANS G F, et al. Solubility of trace metals in two contaminated paddy soils exposed to alternating flooding and drainage[J]. Geoderma, 2016, 261:59-69. [7] DEGRYSE F, SMOLDERS E,PARKER D R. Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils:Concepts, methodologies, prediction and applications-a review[J]. European Journal of Soil Science, 2009, 60(4):590-612. [8] ANTONIADIS V, LEVIZOU E, SHAHEEN S M, et al. Trace elements in the soil-plant interface:Phytoavailability, translocation, and phytoremediation-A review[J]. Earth-Science Reviews, 2017, 171:621-645. [9] 杨洁, 瞿攀, 王金生, 等. 土壤中重金属的生物有效性分析方法及其影响因素综述[J]. 环境污染与防治, 2017, 39(2):217-223. YANG J, QU P, WANG J S, et al. Review on analysis methods of bioavailability of heavy metals in soil and its influence factors.[J]. Environmental Pollution & Control, 2017, 39(2):217-223(in Chinese).
[10] CIADAMIDARO L, PUSCHENREITER M, SANTNER J, et al. Assessment of trace element phytoavailability in compost amended soils using different methodologies[J]. Journal of Soils and Sediments, 2017, 17(5):1251-1261. [11] CONDER J M,LANNO R P. Evaluation of surrogate measures of cadmium, lead, and zinc bioavailability to Eisenia fetida[J]. Chemosphere, 2000, 41(10):1659-1668. [12] MILICEVIC T, RELIC D, SKRIVANJ S, et al. Assessment of major and trace element bioavailability in vineyard soil applying different single extraction procedures and pseudo-total digestion[J]. Chemosphere, 2017, 171:284-293. [13] RAURET G, LOPEZ-SANCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1999, 1(1):57-61. [14] CRABA L, BRUNORI C, GALLETTI M, et al. Comparison of three sequential extraction procedures (original and modified 3 steps BCR procedure) applied to sediments of different origin[J]. Annali Di Chimica, 2004, 94(5-6):409-419. [15] GROENENBERG J E, ROMKENS P F, ZOMEREN A V, et al. Evaluation of the single dilute (0.43 M) nitric acid extraction to determine geochemically reactive elements in soil[J]. Environmental Science & Technology, 2017, 51(4):2246-2253. [16] 朱广云, 蒋宝, 李菊梅, 等. 土壤Mehlich-3可浸提态镍对大麦根伸长的毒性[J]. 中国环境科学, 2018, 38(8):3143-3150. ZHU G Y, JIANG B, LI J M, et al. Toxicity thresholds based on Mehlich-3 extractable nickel to barley root elongation.[J]. China Environmental Science, 2018, 38(8):3143-3150(in Chinese).
[17] ASENSIO V, ABREU-JUNIOR C H, DA SILVA F C, et al. Evaluation of chemical extractants to assess metals phytoavailability in Brazilian municipal solid waste composts[J]. Environmental Pollution, 2018, 243(Pt B):1235-1241. [18] GROENENBERG J E,LOFTS S. The use of assemblage models to describe trace element partitioning, speciation, and fate:a review[J]. Environmental Toxicology and Chemistry, 2014, 33(10):2181-2196. [19] 赵晓鹏, 顾雪元. 地球化学模型在土壤重金属形态研究中的应用进展[J]. 环境化学, 2019, 38(1):59-70. ZHAO X P, GU X Y. Application of geochemical metals in heavy metals in speciation:a review:[J]. Enviromental Chemistry, 2019, 38(1):59-70(in Chinese).
[20] BONTEN L T C, GROENENBERG J E, WENG L, et al. Use of speciation and complexation models to estimate heavy metal sorption in soils[J]. Geoderma, 2008, 146(1-2):303-310. [21] WENG L P, TEMMINGHOFF E J M,VAN RIEMSDIJK W H. Contribution of individual sorhents to the control of heavy metal activity in sandy soil[J]. Environmental Science & Technology, 2001, 35(22):4436-4443. [22] ZHU B, LIAO Q, ZHAO X, et al. A multi-surface model to predict Cd phytoavailability to wheat (Triticum aestivum L)[J]. The Science of the Total Environment, 2018, 630:1374-1380. [23] ZHAO X, JIANG Y, GU X, et al. Multisurface modeling of Ni bioavailability to wheat (Triticum aestivum L.) in various soils[J]. Environmental Pollution, 2018, 238:590-598. [24] KEIZER M G,VAN RIEMSDIJK W H. ECOSAT:A computer program for the calculation of speciation and transport in soil-water systems[Z]. Wageningen University, The Netherlands, 2009. [25] KINNIBURGH D G, VAN RIEMSDIJK W H, KOOPAL L K, et al. Ion binding to natural organic matter:Competition, heterogeneity, stoichiometry and thermodynamic consistency[J]. Colloid Surface A, 1999, 151(1-2):147-166. [26] MILNE C J, KINNIBURGH D G, VAN RIEMSDIJK W H, et al. Generic NICA-Donnan model parameters for metal-ion binding by humic substances[J]. Environmental Science & Technology, 2003, 37(5):958-971. [27] GUSTAFSSON J P, PECHOVA P,BERGGREN D. Modeling metal binding to soils:The role of natural organic matter[J]. Environmental Science & Technology, 2003, 37(12):2767-2774. [28] FEST E P M J, TEMMINGHOFF E J M, GRIFFIOEN J, et al. Proton buffering and metal leaching in sandy soils[J]. Environmental Science & Technology, 2005, 30(20):7901-7908. [29] WENG L, TEMMINGHOFF E J M, VAN RIEMSDIJK W H. Determination of the free ion concentration of trace metals in soil solution using a soil column Donnan membrane technique[J]. European Journal of Soil Science, 2001, 52(4):629-637. [30] DZOMBAK D A,MOREL F M M. Surface complexation modeling hydrous ferric oxide[M]. New York, John Wiley & Sons, 1990. [31] HIEMSTRA T,VANRIEMSDIJK W H. A surface structural approach to ion adsorption:The charge distribution (Cd) model[J]. Journal of Colloid and Interface Science, 1996, 179(2):488-508. [32] REN Z L, SIVRY Y, DAI J, et al. Multi-element stable isotopic dilution and multi-surface modelling to assess the speciation and reactivity of cadmium and copper in soil[J]. European Journal of Soil Science, 2015, 66(6):973-982. [33] SPARKS D L. Environmental soil chemistry[M]. New York, John Wiley & Sons, Inc., 2003. [34] GU X,EVANS L J. Modelling the adsorption of Cd(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) onto Fithian illite[J]. Journal of Colloid and Interface Science, 2007, 307(2):317-325. [35] 熊婕, 朱奇宏, 黄道友, 等. 南方稻田土壤有效态镉提取方法研究[J]. 农业现代化研究, 2018, 39(1):170-177. XIONG J, ZHU Q H, HUANG D Y, et al. Comparison of single extraction methods for assessing Cd availability in paddy soils in South China[J]. Research of Agricultural Modernization, 2018, 39(1):170-177(in Chinese).
[36] HUANG G, DING C, HU Z, et al. Topdressing iron fertilizer coupled with pre-immobilization in acidic paddy fields reduced cadmium uptake by rice (Oryza sativa L.)[J]. The Science of the total environment, 2018, 636:1040-1047. [37] GROENENBERG J E,LOFTS S. The use of assemblage models to describe trace element partitioning, speciation, and fate:A review[J]. Environmental Toxicology and Chemistry, 2014, 33(10):2181-2196. [38] KHAI N M, OBORN I, HILLIER S, et al. Modeling of metal binding in tropical Fluvisols and Acrisols treated with biosolids and wastewater[J]. Chemosphere, 2008, 70(8):1338-1346. [39] DEGRYSE F, SHAHBAZI A, VERHEYEN L, et al. Diffusion limitations in root uptake of cadmium and zinc, but not nickel, and resulting bias in the Michaelis constant[J]. Plant Physiology, 2012, 160(2):1097-1109. [40] 王小庆, 李波, 韦东普, 等. 土壤中铜和镍的植物毒性预测模型的种间外推验证[J]. 生态毒理学报, 2013, 8(1):77-84. WANG X Q, LI B, WEI D P, et al. Cross-species extrapolation of phytotoxicity prediction models for nickel and copper added to soil[J]. Asian Journal of Ecotoxicology, 2013, 8(1):77-84(in Chinese).
-

计量
- 文章访问数: 1649
- HTML全文浏览数: 1649
- PDF下载数: 59
- 施引文献: 0