基于多表面形态模型的土壤镉在小白菜中的富集效应

屈晓泽, 许伟伟, 赵晓鹏, 朱泊静, 顾雪元. 基于多表面形态模型的土壤镉在小白菜中的富集效应[J]. 环境化学, 2019, (9): 1945-1954. doi: 10.7524/j.issn.0254-6108.2019022001
引用本文: 屈晓泽, 许伟伟, 赵晓鹏, 朱泊静, 顾雪元. 基于多表面形态模型的土壤镉在小白菜中的富集效应[J]. 环境化学, 2019, (9): 1945-1954. doi: 10.7524/j.issn.0254-6108.2019022001
QU Xiaoze, XU Weiwei, ZHAO Xiaopeng, ZHU Bojing, GU Xueyuan. Accumulation of Cd in soil-cabbage system based on multi-surface speciation model[J]. Environmental Chemistry, 2019, (9): 1945-1954. doi: 10.7524/j.issn.0254-6108.2019022001
Citation: QU Xiaoze, XU Weiwei, ZHAO Xiaopeng, ZHU Bojing, GU Xueyuan. Accumulation of Cd in soil-cabbage system based on multi-surface speciation model[J]. Environmental Chemistry, 2019, (9): 1945-1954. doi: 10.7524/j.issn.0254-6108.2019022001

基于多表面形态模型的土壤镉在小白菜中的富集效应

    通讯作者: 顾雪元, E-mail: xygu@nju.edu.cn
  • 基金项目:

    国家重点研发专项(2018YFC1800602)和国家自然科学基金(21876080,21577062)资助.

Accumulation of Cd in soil-cabbage system based on multi-surface speciation model

    Corresponding author: GU Xueyuan, xygu@nju.edu.cn
  • Fund Project: Supported by National Key Research and Development Programs(2018YFC1800602)and the Natural Science Foundation of China(21876080, 21577062).
  • 摘要: 基于土壤理化性质和热力学化学平衡的多表面形态模型(multi-surface speciation model,MSM)近年来已成功被应用于描述多种痕量元素在土壤固/液相间的分配,但在土壤-植物系统中的应用尚不多见.本文采用室内盆栽实验,调查了我国6种代表性土壤中Cd(Ⅱ)在小白菜中的生物富集情况,首先比较了5种化学提取方法(总Cd、CaCl2、HNO3、Mehlich-3和BCR)测定的有效态Cd与小白菜中Cd富集量之间的相关性,其次基于MSM预测土壤中溶解态Cd(Ⅱ)浓度并与Cd在白菜中富集量进行了相关性分析,同时考察了不同模型架构下模型对相关性的影响.结果表明,MSM预测的土壤中溶解态Cd浓度与小白菜中Cd富集量之间有较好的相关性,大部分模型架构下优于化学提取法,说明MSM一定程度上反映了土壤理化性质对Cd生物有效性的影响.由于MSM在计算过程中基于热力学参数,因此具有很好的外延性,说明其在土壤-植物系统中重金属生物有效性和风险评价方面具有较大的潜力.
  • 加载中
  • [1] 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9):1689-1692.

    CHEN N C, ZHENG Y J, HE X F, et al. Analysis of the bulletin of national soil pollution survey[J]. Journal of Agro-Environment Science, 2017, 36(9):1689-1692(in Chinese).

    [2] RIZWAN M, ALI S, ADREES M, et al. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables[J]. Chemosphere, 2017, 182:90-105.
    [3] ZHAO F J, MA Y, ZHU Y G, et al. Soil contamination in China:Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2):750-759.
    [4] MCLAUGHLIN M J, ZARCINAS B A, STEVENS D P, et al. Soil testing for heavy metals[J]. Communications in Soil Science and Plant Analysis, 2008, 31(11-14):1661-1700.
    [5] DING C, ZHANG T, WANG X, et al. prediction model for cadmium transfer from soil to carrot (Daucus carota L.) and its application to derive soil thresholds for food safety[J]. Journal of Agricultural and Food Chemistry, 2013, 61(43):10273-10282.
    [6] PAN Y, BONTEN L T C, KOOPMANS G F, et al. Solubility of trace metals in two contaminated paddy soils exposed to alternating flooding and drainage[J]. Geoderma, 2016, 261:59-69.
    [7] DEGRYSE F, SMOLDERS E,PARKER D R. Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils:Concepts, methodologies, prediction and applications-a review[J]. European Journal of Soil Science, 2009, 60(4):590-612.
    [8] ANTONIADIS V, LEVIZOU E, SHAHEEN S M, et al. Trace elements in the soil-plant interface:Phytoavailability, translocation, and phytoremediation-A review[J]. Earth-Science Reviews, 2017, 171:621-645.
    [9] 杨洁, 瞿攀, 王金生, 等. 土壤中重金属的生物有效性分析方法及其影响因素综述[J]. 环境污染与防治, 2017, 39(2):217-223.

    YANG J, QU P, WANG J S, et al. Review on analysis methods of bioavailability of heavy metals in soil and its influence factors.[J]. Environmental Pollution & Control, 2017, 39(2):217-223(in Chinese).

    [10] CIADAMIDARO L, PUSCHENREITER M, SANTNER J, et al. Assessment of trace element phytoavailability in compost amended soils using different methodologies[J]. Journal of Soils and Sediments, 2017, 17(5):1251-1261.
    [11] CONDER J M,LANNO R P. Evaluation of surrogate measures of cadmium, lead, and zinc bioavailability to Eisenia fetida[J]. Chemosphere, 2000, 41(10):1659-1668.
    [12] MILICEVIC T, RELIC D, SKRIVANJ S, et al. Assessment of major and trace element bioavailability in vineyard soil applying different single extraction procedures and pseudo-total digestion[J]. Chemosphere, 2017, 171:284-293.
    [13] RAURET G, LOPEZ-SANCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1999, 1(1):57-61.
    [14] CRABA L, BRUNORI C, GALLETTI M, et al. Comparison of three sequential extraction procedures (original and modified 3 steps BCR procedure) applied to sediments of different origin[J]. Annali Di Chimica, 2004, 94(5-6):409-419.
    [15] GROENENBERG J E, ROMKENS P F, ZOMEREN A V, et al. Evaluation of the single dilute (0.43 M) nitric acid extraction to determine geochemically reactive elements in soil[J]. Environmental Science & Technology, 2017, 51(4):2246-2253.
    [16] 朱广云, 蒋宝, 李菊梅, 等. 土壤Mehlich-3可浸提态镍对大麦根伸长的毒性[J]. 中国环境科学, 2018, 38(8):3143-3150.

    ZHU G Y, JIANG B, LI J M, et al. Toxicity thresholds based on Mehlich-3 extractable nickel to barley root elongation.[J]. China Environmental Science, 2018, 38(8):3143-3150(in Chinese).

    [17] ASENSIO V, ABREU-JUNIOR C H, DA SILVA F C, et al. Evaluation of chemical extractants to assess metals phytoavailability in Brazilian municipal solid waste composts[J]. Environmental Pollution, 2018, 243(Pt B):1235-1241.
    [18] GROENENBERG J E,LOFTS S. The use of assemblage models to describe trace element partitioning, speciation, and fate:a review[J]. Environmental Toxicology and Chemistry, 2014, 33(10):2181-2196.
    [19] 赵晓鹏, 顾雪元. 地球化学模型在土壤重金属形态研究中的应用进展[J]. 环境化学, 2019, 38(1):59-70.

    ZHAO X P, GU X Y. Application of geochemical metals in heavy metals in speciation:a review:[J]. Enviromental Chemistry, 2019, 38(1):59-70(in Chinese).

    [20] BONTEN L T C, GROENENBERG J E, WENG L, et al. Use of speciation and complexation models to estimate heavy metal sorption in soils[J]. Geoderma, 2008, 146(1-2):303-310.
    [21] WENG L P, TEMMINGHOFF E J M,VAN RIEMSDIJK W H. Contribution of individual sorhents to the control of heavy metal activity in sandy soil[J]. Environmental Science & Technology, 2001, 35(22):4436-4443.
    [22] ZHU B, LIAO Q, ZHAO X, et al. A multi-surface model to predict Cd phytoavailability to wheat (Triticum aestivum L)[J]. The Science of the Total Environment, 2018, 630:1374-1380.
    [23] ZHAO X, JIANG Y, GU X, et al. Multisurface modeling of Ni bioavailability to wheat (Triticum aestivum L.) in various soils[J]. Environmental Pollution, 2018, 238:590-598.
    [24] KEIZER M G,VAN RIEMSDIJK W H. ECOSAT:A computer program for the calculation of speciation and transport in soil-water systems[Z]. Wageningen University, The Netherlands, 2009.
    [25] KINNIBURGH D G, VAN RIEMSDIJK W H, KOOPAL L K, et al. Ion binding to natural organic matter:Competition, heterogeneity, stoichiometry and thermodynamic consistency[J]. Colloid Surface A, 1999, 151(1-2):147-166.
    [26] MILNE C J, KINNIBURGH D G, VAN RIEMSDIJK W H, et al. Generic NICA-Donnan model parameters for metal-ion binding by humic substances[J]. Environmental Science & Technology, 2003, 37(5):958-971.
    [27] GUSTAFSSON J P, PECHOVA P,BERGGREN D. Modeling metal binding to soils:The role of natural organic matter[J]. Environmental Science & Technology, 2003, 37(12):2767-2774.
    [28] FEST E P M J, TEMMINGHOFF E J M, GRIFFIOEN J, et al. Proton buffering and metal leaching in sandy soils[J]. Environmental Science & Technology, 2005, 30(20):7901-7908.
    [29] WENG L, TEMMINGHOFF E J M, VAN RIEMSDIJK W H. Determination of the free ion concentration of trace metals in soil solution using a soil column Donnan membrane technique[J]. European Journal of Soil Science, 2001, 52(4):629-637.
    [30] DZOMBAK D A,MOREL F M M. Surface complexation modeling hydrous ferric oxide[M]. New York, John Wiley & Sons, 1990.
    [31] HIEMSTRA T,VANRIEMSDIJK W H. A surface structural approach to ion adsorption:The charge distribution (Cd) model[J]. Journal of Colloid and Interface Science, 1996, 179(2):488-508.
    [32] REN Z L, SIVRY Y, DAI J, et al. Multi-element stable isotopic dilution and multi-surface modelling to assess the speciation and reactivity of cadmium and copper in soil[J]. European Journal of Soil Science, 2015, 66(6):973-982.
    [33] SPARKS D L. Environmental soil chemistry[M]. New York, John Wiley & Sons, Inc., 2003.
    [34] GU X,EVANS L J. Modelling the adsorption of Cd(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) onto Fithian illite[J]. Journal of Colloid and Interface Science, 2007, 307(2):317-325.
    [35] 熊婕, 朱奇宏, 黄道友, 等. 南方稻田土壤有效态镉提取方法研究[J]. 农业现代化研究, 2018, 39(1):170-177.

    XIONG J, ZHU Q H, HUANG D Y, et al. Comparison of single extraction methods for assessing Cd availability in paddy soils in South China[J]. Research of Agricultural Modernization, 2018, 39(1):170-177(in Chinese).

    [36] HUANG G, DING C, HU Z, et al. Topdressing iron fertilizer coupled with pre-immobilization in acidic paddy fields reduced cadmium uptake by rice (Oryza sativa L.)[J]. The Science of the total environment, 2018, 636:1040-1047.
    [37] GROENENBERG J E,LOFTS S. The use of assemblage models to describe trace element partitioning, speciation, and fate:A review[J]. Environmental Toxicology and Chemistry, 2014, 33(10):2181-2196.
    [38] KHAI N M, OBORN I, HILLIER S, et al. Modeling of metal binding in tropical Fluvisols and Acrisols treated with biosolids and wastewater[J]. Chemosphere, 2008, 70(8):1338-1346.
    [39] DEGRYSE F, SHAHBAZI A, VERHEYEN L, et al. Diffusion limitations in root uptake of cadmium and zinc, but not nickel, and resulting bias in the Michaelis constant[J]. Plant Physiology, 2012, 160(2):1097-1109.
    [40] 王小庆, 李波, 韦东普, 等. 土壤中铜和镍的植物毒性预测模型的种间外推验证[J]. 生态毒理学报, 2013, 8(1):77-84.

    WANG X Q, LI B, WEI D P, et al. Cross-species extrapolation of phytotoxicity prediction models for nickel and copper added to soil[J]. Asian Journal of Ecotoxicology, 2013, 8(1):77-84(in Chinese).

  • 加载中
计量
  • 文章访问数:  1649
  • HTML全文浏览数:  1649
  • PDF下载数:  59
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-02-20
屈晓泽, 许伟伟, 赵晓鹏, 朱泊静, 顾雪元. 基于多表面形态模型的土壤镉在小白菜中的富集效应[J]. 环境化学, 2019, (9): 1945-1954. doi: 10.7524/j.issn.0254-6108.2019022001
引用本文: 屈晓泽, 许伟伟, 赵晓鹏, 朱泊静, 顾雪元. 基于多表面形态模型的土壤镉在小白菜中的富集效应[J]. 环境化学, 2019, (9): 1945-1954. doi: 10.7524/j.issn.0254-6108.2019022001
QU Xiaoze, XU Weiwei, ZHAO Xiaopeng, ZHU Bojing, GU Xueyuan. Accumulation of Cd in soil-cabbage system based on multi-surface speciation model[J]. Environmental Chemistry, 2019, (9): 1945-1954. doi: 10.7524/j.issn.0254-6108.2019022001
Citation: QU Xiaoze, XU Weiwei, ZHAO Xiaopeng, ZHU Bojing, GU Xueyuan. Accumulation of Cd in soil-cabbage system based on multi-surface speciation model[J]. Environmental Chemistry, 2019, (9): 1945-1954. doi: 10.7524/j.issn.0254-6108.2019022001

基于多表面形态模型的土壤镉在小白菜中的富集效应

    通讯作者: 顾雪元, E-mail: xygu@nju.edu.cn
  • 1. 南京大学环境学院, 南京, 210023;
  • 2. 江苏省地质调查研究院, 南京, 210018;
  • 3. 自然资源部国土(耕地)生态监测与修复工程技术创新中心, 南京, 210018
基金项目:

国家重点研发专项(2018YFC1800602)和国家自然科学基金(21876080,21577062)资助.

摘要: 基于土壤理化性质和热力学化学平衡的多表面形态模型(multi-surface speciation model,MSM)近年来已成功被应用于描述多种痕量元素在土壤固/液相间的分配,但在土壤-植物系统中的应用尚不多见.本文采用室内盆栽实验,调查了我国6种代表性土壤中Cd(Ⅱ)在小白菜中的生物富集情况,首先比较了5种化学提取方法(总Cd、CaCl2、HNO3、Mehlich-3和BCR)测定的有效态Cd与小白菜中Cd富集量之间的相关性,其次基于MSM预测土壤中溶解态Cd(Ⅱ)浓度并与Cd在白菜中富集量进行了相关性分析,同时考察了不同模型架构下模型对相关性的影响.结果表明,MSM预测的土壤中溶解态Cd浓度与小白菜中Cd富集量之间有较好的相关性,大部分模型架构下优于化学提取法,说明MSM一定程度上反映了土壤理化性质对Cd生物有效性的影响.由于MSM在计算过程中基于热力学参数,因此具有很好的外延性,说明其在土壤-植物系统中重金属生物有效性和风险评价方面具有较大的潜力.

English Abstract

参考文献 (40)

返回顶部

目录

/

返回文章
返回