多种色谱质谱联用技术测定沉积物中的十溴二苯醚

王惠宇, 宋善军, 邵明武, 尹建道, 杨晨, 李彭辉. 多种色谱质谱联用技术测定沉积物中的十溴二苯醚[J]. 环境化学, 2019, (10): 2203-2211. doi: 10.7524/j.issn.0254-6108.2018111701
引用本文: 王惠宇, 宋善军, 邵明武, 尹建道, 杨晨, 李彭辉. 多种色谱质谱联用技术测定沉积物中的十溴二苯醚[J]. 环境化学, 2019, (10): 2203-2211. doi: 10.7524/j.issn.0254-6108.2018111701
WANG Huiyu, SONG Shanjun, SHAO Mingwu, YIN Jiandao, YANG Chen, LI Penghui. Determination of decabromodiphenyl ether in sediment using chromatography-mass spectrometry methods[J]. Environmental Chemistry, 2019, (10): 2203-2211. doi: 10.7524/j.issn.0254-6108.2018111701
Citation: WANG Huiyu, SONG Shanjun, SHAO Mingwu, YIN Jiandao, YANG Chen, LI Penghui. Determination of decabromodiphenyl ether in sediment using chromatography-mass spectrometry methods[J]. Environmental Chemistry, 2019, (10): 2203-2211. doi: 10.7524/j.issn.0254-6108.2018111701

多种色谱质谱联用技术测定沉积物中的十溴二苯醚

    通讯作者: 宋善军, E-mail: songsj@nim.ac.cn
  • 基金项目:

    国家质量基础项目(2016YFF0201102)和国家自然科学基金青年基金(41601548)资助.

Determination of decabromodiphenyl ether in sediment using chromatography-mass spectrometry methods

    Corresponding author: SONG Shanjun, songsj@nim.ac.cn
  • Fund Project: Supported by the National Key Research and Development Program of China (2016YFF0201102) and National Natural Science Foundation of China (41601548).
  • 摘要: 随着十溴二苯醚(BDE-209)正式进入《斯德哥尔摩公约》名单,准确测量其浓度水平对研究其环境行为具有重要意义.本文对多种色谱质谱联用技术——气相色谱-负化学电离质谱(GC-NCI-MS)、气相色谱-电子轰击电离质谱(GC-EI-MS)、气相色谱-电感耦合等离子体质谱(GC-ICP-MS)和高效液相色谱-电感耦合等离子体质谱(HPLC-ICP-MS)进行了优化和评估,并对其在实际环境沉积物样品中检测BDE-209的性能进行了考察.4种检测方法的定量限为3—200 ng·mL-1,在0.5-10 μg·mL-1的范围内有良好的线性关系(r2 > 0.995),测量结果的相对标准偏差(RSD)在0.5%—8.7%之间,可以满足BDE-209分析检测的需求.应用到沉积物实际样品的检测时,各方法测量结果的RSD为0.7%—15.7%,基质效应为98%—166%,其中GC-EI-MS和GC-NCI-MS表现出基质增强效应且分析结果的稳定性受到影响,可通过内标或基质加标方式进行校正,GC-ICP-MS、HPLC-ICP-MS几乎不受实际样品基质的影响,测量结果的准确性良好.
  • 加载中
  • [1] SONG S J, SHAO M W, TANG H, et al. Development, comparison and application of sorbent-assisted accelerated solvent extraction, microwave-assisted extraction and ultrasonic-assisted extraction for the determination of polybrominated diphenyl ethers in sediments[J].Journal of Chromatography A, 2016, 1475:1-7.
    [2] ROSCALES J L, MUñOZ-ARNANZ J, ROS M, et al. Assessment of POPs in air from Spain using passive sampling from 2008 to 2015. Part I:Spatial and temporal observations of PBDEs[J]. Science of the Total Environment, 2018, 634:1657-1668.
    [3] SONG W, FORD J C, LI A, et al. Polybrominated diphenyl ethers in the sediments of the Great Lakes. 1. Lake Superior[J]. Environmental Science & Technology, 2004, 38(12):3286-3293.
    [4] SONG W, LI A, FORD J C, et al. Polybrominated Diphenyl Ethers in the Sediments of the Great Lakes. 2. Lakes Michigan and Huron[J]. Environmental Science & Technology, 2005, 39(10):3474-3479.
    [5] SONG W, FORD J C, LI A, et al. Polybrominated diphenyl ethers in the sediments of the Great Lakes. 3. Lakes Ontario and Erie[J]. Environmental Science & Technology, 2005, 39(15):5600-5605.
    [6] LEE H J, AN S, KIM G B. Background level and composition of polybrominated diphenyl ethers (PBDEs) in creek and subtidal sediments in a rural area of Korea[J]. Science of the Total Environment, 2014, 470:1479-1484.
    [7] LIBER Y, MOURIER B, MARCHAND P, et al. Past and recent state of sediment contamination by persistent organic pollutants (POPs) in the Rhone River:Overview of ecotoxicological implications[J]. Science of the Total Environment, 2019, 646:1037-1046.
    [8] MACIAS-ZAMORA J V, RAMIREZ-ALVAREZ N, HERNANDEZ-GUZMAN F A, et al. On the sources of PBDEs in coastal marine sediments off Baja California, Mexico[J]. Science of the Total Environment, 2016, 571:59-66.
    [9] MOON H B, KANNAN K, CHOI M, et al. Polybrominated diphenyl ethers (PBDEs) in marine sediments from industrialized bays of Korea[J]. Marine Pollution Bulletin, 2007, 54(9):1402-1412.
    [10] WANG J, LIN Z, LIN K, et al. Polybrominated diphenyl ethers in water, sediment, soil, and biological samples from different industrial areas in Zhejiang, China[J]. Journal of Hazardous Materials, 2011, 197(6):211-219.
    [11] CHENG J O, KO F C. Occurrence of PBDEs in surface sediments of metropolitan rivers:Sources, distribution pattern, and risk assessment[J]. Science of the Total Environment, 2018, 637:1578-1585.
    [12] CHAI M W, LI R L, SHI C, et al. Contamination of polybrominated diphenyl ethers (PBDEs) in urban mangroves of Southern China[J]. Science of the Total Environment, 2019, 646:390-399.
    [13] FU R, WEN D, CHEN X, et al. Treatment of decabromodiphenyl ether (BDE209) contaminated soil by solubilizer-enhanced electrokinetics coupled with ZVI-PRB[J]. Environmental Science & Pollution Research, 2017, 24(15):1-10.
    [14] ZHANG W, LIANG J, LI J, et al. Diverse impacts of a step and repeated BDE209-Pb exposures on accumulation and metabolism of BDE209 in earthworms[J]. Chemosphere, 2016, 159:235-243.
    [15] BINICI B, BILSEL M, KARAKAS M, et al. An efficient GC-IDMS method for determination of PBDEs and PBB in plastic materials[J]. Talanta, 2013, 116(22):417-426.
    [16] KALACHOVA K, CAJKA T, SANDY C, et al. High throughput sample preparation in combination with gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-MS/MS):A smart procedure for (ultra)trace analysis of brominated flame retardants in fish[J]. Talanta, 2013, 105(4):109-116.
    [17] 司晓喜, 朱瑞芝, 张凤梅, 等. 微波辅助萃取-气相色谱-负化学电离/电子轰击电离-飞行时间质谱法测定烟草中农药残留[J]. 色谱, 2016, 34(6):608-614.

    SI X X, ZHU R Z,ZHANG F M, et al. determination of pesticide residues in tobacco by gas chromatography-negative chemical ionization/electron impact ionization-time of flight mass spectrometry coupled with microwave assisted extraction[J]. Chromatography, 2016, 34(6):608-614(in Chinese).

    [18] VONDERHEIDE A P, MONTES-BAYóN M, CARUSO J A. Development and application of a method for the analysis of brominated flame retardants by fast gas chromatography with inductively coupled plasma mass spectrometric detection[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(11):1480-1485.
    [19] PIETROŃ W J, MAŁAGOCKI P. Quantification of polybrominated diphenyl ethers (PBDEs) in food. A review[J]. Talanta, 2017, 167:411-427.
    [20] SHAO M W, WEI C, JIA Y J, et al. Determination of selected polybrominated diphenylethers and polybrominated biphenyl in polymers by ultrasonic-assisted extraction and high-performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 2010, 82(12):5154-5159.
    [21] 王旭亮, 何欢, 李文超, 等. 加速溶剂萃取/凝胶渗透色谱净化/气相色谱-负化学离子源质谱测定生物样品中的四溴联苯醚[J]. 环境化学, 2011, 30(6):1186-1191.

    WANG X L, HE H, LI W C, et al. Determination of tetrabrominated biphenyl ether in biological samples using accelerated solvent extraction/gel permeation chromatography/gas chromatography-negative chemical ion source mass spectrometry[J]. Environmental Chemistry, 2011, 30(6):1186-1191(in Chinese).

    [22] MARTELLINI T, DILETTI G, SCORTICHINI G, et al. Occurrence of polybrominated diphenyl ethers (PBDEs) in foodstuffs in Italy and implications for human exposure[J]. Food & Chemical Toxicology, 2016, 89:32-38.
    [23] 金璐, 唐阵武, 张连振, 等. 废弃塑料处置地典型植物多溴二苯醚污染特征[J]. 环境化学, 2014, 33(6):901-907.

    JIN L, TANG Z W, ZHANG L Z, et al. Polybrominated diphenyl ethersin in plants from a plastic waste recycling area in China[J]. Environmental Chemistry, 2014, 33(6):901-907(in Chinese).

    [24] GUSTAVSSON J, AHRENS L, NGUYEN M A, et al. Development and comparison of gas chromatography-mass spectrometry techniques for analysis of flame retardants[J]. Journal of Chromatography A, 2016, 1481:116-126.
    [25] ZHANG C, LI X, CHEN Y, et al. The compound-independent calibration of polybrominated diphenyl ethers isomers using gas chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Chromatography A, 2018, 1576:120-130.
    [26] 贾永娟, 邵明武, 李蕾. 高效液相色谱法检测丙烯腈-丁二烯-苯乙烯塑料中多溴联苯醚[J]. 分析试验室, 2010, 29(12):63-65.

    JIA Y J, SHAO M W, LI L. Determination of polybrominated biphenyl ether in acrylonitrile-butadiene-styrene plastics by HPLC[J]. Analytical Laboratory, 2010, 29(12):63-65(in Chinese).

    [27] WEI H, ZHANG S Y, WANG Y W, et al. Dependence of mass spectrometric fragmentation on the bromine substitution pattern of polybrominated diphenyl ethers[J]. Journal of the American Society for Mass Spectrometry, 2014, 25(6):1058-1067.
    [28] BESER M I, BELTRáN J, YUSà V. Design of experiment approach for the optimization of polybrominated diphenyl ethers determination in fine airborne particulate matter by microwave-assisted extraction and gas chromatography coupled to tandem mass spectrometry[J]. Journal of Chromatography A, 2014, 1323(1):1-10.
    [29] MORENO A M J, NAVAS M J, ASUERO A G. HPLC-DAD determination of CNS-acting drugs in human blood, plasma, and serum[J]. Critical Reviews in Analytical Chemistry, 2014, 44(1):68-106.
    [30] BIERŁA K, RIU A, DEBRAUWER L, et al. Screening for polybrominated diphenyl ethers in biological samples by reversed-phase fast HPLC-ICP MS[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(6):889-892.
    [31] PETREAS M, OROS D. Polybrominated diphenyl ethers in California wastestreams[J]. Chemosphere, 2009, 74(7):996-1001.
  • 加载中
计量
  • 文章访问数:  1420
  • HTML全文浏览数:  1420
  • PDF下载数:  48
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-11-17

多种色谱质谱联用技术测定沉积物中的十溴二苯醚

    通讯作者: 宋善军, E-mail: songsj@nim.ac.cn
  • 1. 天津理工大学, 天津, 300384;
  • 2. 中国计量科学研究院, 北京, 100029
基金项目:

国家质量基础项目(2016YFF0201102)和国家自然科学基金青年基金(41601548)资助.

摘要: 随着十溴二苯醚(BDE-209)正式进入《斯德哥尔摩公约》名单,准确测量其浓度水平对研究其环境行为具有重要意义.本文对多种色谱质谱联用技术——气相色谱-负化学电离质谱(GC-NCI-MS)、气相色谱-电子轰击电离质谱(GC-EI-MS)、气相色谱-电感耦合等离子体质谱(GC-ICP-MS)和高效液相色谱-电感耦合等离子体质谱(HPLC-ICP-MS)进行了优化和评估,并对其在实际环境沉积物样品中检测BDE-209的性能进行了考察.4种检测方法的定量限为3—200 ng·mL-1,在0.5-10 μg·mL-1的范围内有良好的线性关系(r2 > 0.995),测量结果的相对标准偏差(RSD)在0.5%—8.7%之间,可以满足BDE-209分析检测的需求.应用到沉积物实际样品的检测时,各方法测量结果的RSD为0.7%—15.7%,基质效应为98%—166%,其中GC-EI-MS和GC-NCI-MS表现出基质增强效应且分析结果的稳定性受到影响,可通过内标或基质加标方式进行校正,GC-ICP-MS、HPLC-ICP-MS几乎不受实际样品基质的影响,测量结果的准确性良好.

English Abstract

参考文献 (31)

目录

/

返回文章
返回