多孔TiO2空心球降解挥发性有机物的性能

邵俊伟, 吕金泽, 李激, 刘睿哲. 多孔TiO2空心球降解挥发性有机物的性能[J]. 环境化学, 2019, (10): 2195-2202. doi: 10.7524/j.issn.0254-6108.2018112607
引用本文: 邵俊伟, 吕金泽, 李激, 刘睿哲. 多孔TiO2空心球降解挥发性有机物的性能[J]. 环境化学, 2019, (10): 2195-2202. doi: 10.7524/j.issn.0254-6108.2018112607
SHAO Junwei, LYU Jinze, LI Ji, LIU Ruizhe. The degradation of volatile organic compounds by porous TiO2 hollow spheres[J]. Environmental Chemistry, 2019, (10): 2195-2202. doi: 10.7524/j.issn.0254-6108.2018112607
Citation: SHAO Junwei, LYU Jinze, LI Ji, LIU Ruizhe. The degradation of volatile organic compounds by porous TiO2 hollow spheres[J]. Environmental Chemistry, 2019, (10): 2195-2202. doi: 10.7524/j.issn.0254-6108.2018112607

多孔TiO2空心球降解挥发性有机物的性能

    通讯作者: 吕金泽, E-mail: ljz@jiangnan.edu.cn
  • 基金项目:

    国家自然科学基金青年基金(21707051)和国家水体污染控制与治理科技重大专项(2017ZX07202001-004,2017ZX07202001-005)资助.

The degradation of volatile organic compounds by porous TiO2 hollow spheres

    Corresponding author: LYU Jinze, ljz@jiangnan.edu.cn
  • Fund Project: Supported by the National Natural Science Foundation of China(21707051) and Major Science and Technology Program for Water Pollution Control and Treatment(2017ZX07202001-004,2017ZX07202001-005).
  • 摘要: 为实现挥发性有机物(volatile organic compounds,VOCs)的高效吸附-矿化,本研究以SiO2为模板、十二胺为成孔剂制备了不同壁厚的多孔TiO2空心球,并以相同壁厚的SiO2@TiO2实心核壳材料做对比研究空心结构的光学和反应特性.采用透射电镜、氮气等温吸附-脱附、X射线衍射、紫外-可见吸收光谱、表面光电压谱等手段表征材料物化结构,以甲苯为VOCs的代表进行光催化降解实验.结果表明,多孔空心TiO2的比表面积和吸附性能均优于实心TiO2.同时,空心腔体显著提高了光吸收率和载流子分离效率.当壁厚为27 nm时空心材料对甲苯的降解速率和矿化效率分别达到了1.14 mg·m-3·min-1和81.3%,是相同壁厚条件下实心材料的2.15倍和2.31倍.
  • 加载中
  • [1] 付晓辛, 王新明, FRANCOIS BERNARD. 空气清新剂中挥发性有机物的组成及其对室内空气质量的潜在影响[J]. 环境化学, 2012, 31(2):243-248.

    FU X X, WANG X M, FRANCOIS B. Volatile organic compounds in air fresheners and their potential impacts on indoor air quality[J]. Environmental Chemistry, 2012, 31(2):243-248(in Chinese).

    [2] 王铁宇, 李奇锋, 吕永龙. 我国VOCs的排放特征及控制对策研究[J]. 环境科学, 2013, 12(12):4756-4763.

    WANG T Y, LI Q F, LYU Y L. Study on emission characteristics and control strategies of VOCs in China[J]. Environmental Science, 2013, 12(12):4756-4763(in Chinese).

    [3] LU H, ZHU L. Pollution patterns of polycyclic aromatic hydrocarbons in tobacco smoke[J]. Journal of Hazardous Materials, 2007, 139(2):193-198.
    [4] WANG S B, ANG H M, TADE M O. Volatile organic compounds in indoor environment and photocatalytic oxidation:State of the art[J]. Environment International, 2007, 33(5):694-705.
    [5] LU H, ZHU L Z, CHEN S. Pollution level, phase distribution and health risk of polycyclic aromatic hydrocarbons in indoor air at public places of Hangzhou, China[J]. Environmental Pollution, 2008, 152(3):569-575.
    [6] KHAN F I, Ghoshal A K. Removal of volatile organic compounds from polluted air[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(6):527-545.
    [7] TAN J, WANG P, YAN S. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen productions[J]. Renewable & Sustainable Energy Reviews, 2007, 11(3):401-425.
    [8] OUYANG X H, PENG R X, AI L, et al. Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte[J]. Nature Photonics, 2015, 9(8):520-524.
    [9] TU W, ZHOU Y, LIU Q, et al. Robust Hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 Conversion into renewable fuels[J]. Advanced Functional Materials, 2012, 22(6):1215-1221.
    [10] RETI B, KISS G I, TAMAS, et al. Carbon sphere templates for TiO2 hollow structures:Preparation, characterization and photocatalytic activity[J]. Catalysis Today, 2017, 284:160-168.
    [11] SHANG S, JIAO X, CHEN D. Template-free fabrication of TiO2 hollow spheres and their photocatalytic properties[J]. Acs Applied Materials & Interfaces, 2012, 4(4):860-865.
    [12] WANG H, WU Z, LIU Y. A simple two-step template approach for preparing carbon-doped mesoporous TiO2 hollow microspheres[J]. Journal of Physical Chemistry C, 2009, 113(30):13317-13324.
    [13] CHEN J, NIE X, SHI H, et al. Synthesis of TiO2 hollow sphere multimer photocatalyst by etching titanium plate and its application to the photocatalytic decomposition of gaseous styrene[J]. Chemical Engineering Journal, 2013, 228(5):834-842.
    [14] WANG Z, ZHOU L, LOU X W. Metal oxide hollow nanostructures for lithium-ion batteries[J]. Advanced Materials, 2012, 24(14):1903-1911.
    [15] LYU J Z, ZHU L Z, BURDA C. Considerations to improve adsorption and photocatalysis of low concentration air pollutants on TiO2[J]. Catalysis Today, 2014, 225(1):24-33.
    [16] STOBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid & Interface Science, 1968, 26(1):62-69.
    [17] LYU J Z, ZHU L, BURDA C. Optimizing nanoscale TiO2 for adsorption-enhanced photocatalytic degradation of low-concentration air pollutants[J]. Chemcatchem, 2013, 5(10):3114-3123.
    [18] LYU J Z, GAO J X, ZHANG M, et al. Construction of homojunction-adsorption layer on anatase TiO2 to improve photocatalytic mineralization of volatile organic compounds[J]. Applied Catalysis B-Environmental, 2017, 202:667-674.
    [19] LYU J Z, SUN L N, ZHONG J B, et al. Shielding of surface photogenerated charges by SiO2 coating for the photocatalytic degradation of air pollutants[J]. Chemical Engineering Journal, 2016, 303:314-321.
    [20] ZHOU W, SUN F, PAN K, et al. Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity:preparation, characterization, and photocatalytic performance[J]. Advanced Functional Materials, 2011, 21(10):1922-1930.
    [21] GUAN B Y, YU L, LI, J, et al. A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties[J]. Science Advances, 2016, 2(3):1550-1554.
    [22] LIU B, ZHAO X, NAkATA, et al. Construction of hierarchical titanium dioxide nanomaterials by tuning the structure of butoxide complexes from 2 to 3 dimensional[J]. Journal of Materials Chemistry A, 2013, 1(16):4993-5000.
    [23] 陈礼平. 复合型TiO2纳米管阵列光生电荷行为及光催化性质研究[D]. 长春:吉林大学, 2014. CHENG L P. Photoinduced charge behavior and photocatalytic properties of composite TiO2 nanotube arrays[D]. Chang Chun:Jilin University, 2014(in Chinese).
    [24] YANG M Q, ZHANG Y W, PANG G S, et al. Preparation of Cu2O hollow nanospheres under reflux conditions[J]. European Journal of Inorganic Chemistry, 2007(24):3841-3844.
    [25] SANG B K, HONG S C. Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst[J]. Applied Catalysis B-Environmental, 2002, 35(4):305-315.
  • 加载中
计量
  • 文章访问数:  1106
  • HTML全文浏览数:  1106
  • PDF下载数:  27
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-11-26

多孔TiO2空心球降解挥发性有机物的性能

    通讯作者: 吕金泽, E-mail: ljz@jiangnan.edu.cn
  • 1. 江南大学环境与土木工程学院, 无锡, 214122;
  • 2. 江苏省厌氧生物技术重点实验室, 无锡, 214122;
  • 3. 江南大学化学与材料工程学院, 无锡, 214122
基金项目:

国家自然科学基金青年基金(21707051)和国家水体污染控制与治理科技重大专项(2017ZX07202001-004,2017ZX07202001-005)资助.

摘要: 为实现挥发性有机物(volatile organic compounds,VOCs)的高效吸附-矿化,本研究以SiO2为模板、十二胺为成孔剂制备了不同壁厚的多孔TiO2空心球,并以相同壁厚的SiO2@TiO2实心核壳材料做对比研究空心结构的光学和反应特性.采用透射电镜、氮气等温吸附-脱附、X射线衍射、紫外-可见吸收光谱、表面光电压谱等手段表征材料物化结构,以甲苯为VOCs的代表进行光催化降解实验.结果表明,多孔空心TiO2的比表面积和吸附性能均优于实心TiO2.同时,空心腔体显著提高了光吸收率和载流子分离效率.当壁厚为27 nm时空心材料对甲苯的降解速率和矿化效率分别达到了1.14 mg·m-3·min-1和81.3%,是相同壁厚条件下实心材料的2.15倍和2.31倍.

English Abstract

参考文献 (25)

目录

/

返回文章
返回